当前位置:首页 > 工业控制 > 工业控制
[导读]随着伺服电机的广泛运用,它的选型问题也成为大家关注的焦点。有很多第一次使用伺服电机的客户并不知道怎么选型,甚至有时还会面临选错型号无法更换的尴尬。

随着伺服电机的广泛运用,它的选型问题也成为大家关注的焦点。有很多第一次使用伺服电机的客户并不知道怎么选型,甚至有时还会面临选错型号无法更换的尴尬。

首先要明确伺服电机的使用场合,例如机床、包装机、输送机等。这将有助于确定所需的电机型号、规格和性能。例如,在机床上使用需要电机速度快且精度高,电机转矩大;而在包装机上使用需要电机速度可调,简单控制,稳定性好等。

其次确定所需电机的输出功率、转速、转矩、控制精度、动态响应和负载性能等特性。这些特性将有助于找到最适合您应用场合的电机。例如在输送机上使用的电机如果需要承受大的负载,其输出功率和转矩应该是比较大的。

选择合适的电源,伺服电机从供电电源上区分可分为交流伺服电机和直流伺服电机。二者还是比较好选择的。一般的自动化设备,甲方都会提供标准的380V工业电源或220V电源,此时选择对应电源的伺服电机即可,免去电源类型的转换。但有一些设备,比如立体仓库中的穿梭板、AGV小车等,由于本身的移动性质,大部分使用自带直流电源,所以一般使用直流伺服电机。

选型过程中有几个点是需要我们去考虑的

(1)惯量匹配

要实现对负载的高精度控制,需要考虑电机与系统的惯量是否匹配。对于为什么需要惯量匹配的问题,网上并没有给出一统江湖的说法。个人理解有限,在这里就不解释了。有兴趣的朋友可以自行考证一下并告知一声。惯量匹配的原则为:考虑系统惯量折合到电机轴上,与电机的惯量比不大于10;比值越小,控制稳定性越好,但需要更大的电机,性价比更低。具体的计算方法如有不明白的请自行补学大学"理论力学"。

(2)精度要求

计算经过减速机和传动机构的变化后,电机的控制精度是否能够满足负载的要求。减速器或某些传动机构有一定的回程间隙,都需要考虑。

(3)控制匹配

这个方面主要是与电气设计人员沟通确认,比如伺服控制器的通讯方式是否与PLC匹配,编码器类型及是否需要引出数据等。

(4)需要的功率和速度

根据结构形式和最终负载的速度和加速度要求,计算电机所需功率和速度。值得注意的是,通常情况下需要结合所选电机的速度选取减速机的减速比。在实际选型过程中,比如负载为水平运动,因为各个传动机构的摩擦系数和风载系数的不确定性,公式P=T*N/9549往往无法明确计算(无法精确计算扭矩的大小)。而在实践过程中,也发现使用伺服电机所需功率最大处往往是加减速阶段。所以,通过T=F*R=m*a*R可定量计算所需电机的功率大小和减速机的减速比(m:负载质量;a:负载加速度;R:负载旋转半径)。

有以下几点需要注意:

a) 电机的功率富余系数;b) 考虑机构的传动效率;c) 减速机的输入和输出扭矩是否达标,并有一定的安全系数;d) 后期是否会有加大速度的可能性。值得一提的是,在传统行业中,例如起重机等行业,使用普通的感应电机驱动,加速度无明确要求,计算过程使用的是经验公式。注:负载垂直运行的情况下,注意把重力加速度计算在内。

选择什么样的伺服电机,在很大程度上取决于负载的物理特性,负载的工作特性、系统要求以及工作环境。一旦系统要求确定后,无论选择何种形式的伺服电机,首先要考虑的是选择多大的电机合适,主要考虑负载的物理特性,包括负载扭矩、惯量等。在伺服电机中,通常以扭矩或者力来衡量电机大小,所以选电机首先要计算出折算到电机轴端负载扭矩或者力的大小。计算出扭矩以后需要留出一部分余量,一般选择电机连续扭矩>=1.3倍负载扭矩,这样能保证电机可靠的运行。除此外还需要计算折算到轴端负载惯量的大小,一般选择负载惯量:电机转子惯量<5:1,以保证伺服系统响应的快速性。如果出现电机和负载之间惯量,扭矩不匹配的情况,那么只能牺牲速度,在电机和负载间增加减速机了,这时你需要权衡。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

宇凡微公司凭借其创新的独家扫振一体电机方案,为电动牙刷行业带来了革命性的突破。该方案不仅完美集成了电机本体与扫振功能的伺服系统,实现了电动牙刷的高效、稳定和舒适的使用体验,而且还为成品制造商提供了完美的成本优化方案,降低...

关键字: 伺服电机

抛弃传统的电机,宇凡微扫振一体伺服电机以全新姿态融入电动牙刷体内,为消费者提供更为舒适的口腔护理体验。

关键字: 伺服电机

伺服电机是一种能够精确控制位置、速度和加速度的电动机。它通过内置的反馈系统,能够根据控制信号实时调整输出力矩和转速,从而实现精确的运动控制。伺服电机广泛应用于机械制造、自动化设备、机器人等领域。

关键字: 伺服电机 步进电机

伺服电机驱动器作为现代工业自动化系统中的重要组成部分,其工作原理涉及到多个学科领域,包括电机学、电力电子、控制理论等。本文将详细介绍伺服电机驱动器的工作原理,旨在帮助读者更好地理解这一技术。

关键字: 伺服电机 驱动器 工业自动化

伺服电机编码器是伺服系统的重要组成部分,它能够将伺服电机的位置、速度和方向等运动参数转换成可被处理的数字信号。编码器的工作原理基于光电转换原理或磁电转换原理,下面将分别介绍这两种工作原理。

关键字: 伺服电机 编码器 数字信号

伺服电机编码器是数控机床、工业机器人等自动化设备中非常重要的组成部分,其性能直接影响设备的运动控制精度和稳定性。然而,由于长时间的使用、维护不当或环境因素的影响,伺服电机编码器可能会出现各种故障,影响设备的正常运行。本文...

关键字: 伺服电机 编码器 自动化设备

伺服电机和步进电机在控制精度、低频特性、矩频特性、过载能力、编码器类型等方面存在显著差异。

关键字: 伺服电机 步进电机 编码器

伺服驱动器作为自动化设备的核心部件之一,其作用和原理对于理解自动化设备的工作原理具有重要意义。本文将为您详细介绍伺服驱动器的作用与原理。

关键字: 伺服驱动器 伺服电机

伺服电机是一种能够精确控制位置、速度和加速度的电动机,具有高精度、高速度和高效率的特点。本文将介绍伺服电机的工作原理和特性,以及其在各个行业中的应用。

关键字: 伺服电机 电动机

随着现代工业的发展,对自动化设备的需求越来越高。伺服电机作为一种高精度、高性能的执行元件,被广泛应用于各种自动化设备中。伺服电机的控制方法对于实现精确的位置控制和速度控制起着至关重要的作用。本文将介绍伺服电机的基本原理、...

关键字: 伺服电机 电动机
关闭