当前位置:首页 > 技术学院 > 技术解析
[导读]为增进大家对抛物面天线的认识,本文将对抛物面天线、抛物面天线的特点、抛物面天线的分类予以介绍。

抛物面天线是天线中的一种,但很多人对抛物面天线并不十分了解。为增进大家对抛物面天线的认识,本文将对抛物面天线、抛物面天线的特点、抛物面天线的分类予以介绍。如果你对抛物面天线具有兴趣,不妨和小编一起来继续往下阅读哦。

一、抛物面天线及其特点

抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

抛物面天线的主要优势是它的高方向性。它的功能类似于一个探照灯或手电筒反射器,向一个特定的方向汇聚无线电波到狭窄的波束,或从一个特定的方向接收无线电波。抛物面天线有一些最高的收益,也就是说,他们可以生产最窄波束宽度,不论天线的类型。为了实现窄波束宽度,抛物面反射器必须远远大于所使用的无线电波的波长,所以抛物面天线是用于高频无线电频谱的一部分(UHF和SHF),在这个频段,波长小到可以使用反射面反射。

抛物面天线用作点对点通信的高增益天线,用于微波转播环节等,把附近的城市之间的电话和电视信号,无线WAN/ LAN链接数据通信、卫星通信和卫星通信天线。他们也用于射电望远镜。

使用的其他大型抛物面天线是雷达天线,需要传输的窄束无线电波来定位船只、飞机和导弹等对象。随着家用卫星电视接收器,抛物面天线已经成为现代国家的共同特征。

二、抛物面天线分类

1、卡塞格伦天线

卡塞格伦天线由三部分组成,即主反射器、副反射器和辐射源。其中主反射器为旋转抛物面,副反射面为旋转双曲面。在结构上,双曲面的一个焦点与抛物面的焦点重合,双曲面焦轴与抛物面的焦轴重合,而辐射源位于双曲面的另一焦点上。它是由副反射器对辐射源发出的电磁波进行的一次反射,将电磁波反射到主反射器上,然后再经主反射器反射后获得相应方向的平面波波束,以实现定向发射。

当辐射器位于旋转双曲面的实焦点F1处时,由F1发出的射线经过双曲面反射后的射线,就相当于由双曲面的虚焦点直接发射出的射线。因此只要是双曲面的虚焦点与抛物面的焦点相重合,就可使副反射面反射到主反射面上的射线被抛物面反射成平面波辐射出去。

卡塞格伦天线相对于抛物面天线来讲,它将馈源的辐射方式由抛物面的前馈方式改变为后馈方式,这使天线的结构较为紧凑,制作起来也比较方便。另外卡塞格伦天线可等效为具有长焦距的抛物面天线,而这种长焦距可以使天线从焦点至口面各点的距离接近于常数,因而空间衰耗对馈电器辐射的影响要小,使得卡塞格伦天线的效率比标准抛物面天线要高。

2、格里高利天线

格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重合。格里高利天线的许多特性都与卡塞格伦天线相似,不同的是椭球面的焦点是一个实焦点,所有波束都汇聚于这一点。

3、环焦天线

对卫星通信天线的总要求是在宽频带内有较低的旁瓣、较高的口面效率及较高的G/T值,当天线的口面较小时,使用环焦天线能较好地同时满足这些要求。因此,环焦天线特别适用于VSAT地球站。

环焦天线由主反射面、副反射面和馈源喇叭三部分组成,结构如图2所示。主反射面为部分旋转抛物面,副反射面由椭圆弧CB绕主反射面轴线OC旋转一周构成,馈源喇叭位于旋转椭球面的一个焦点M上。由馈源辐射的电波经副反射面反射后汇聚于椭球面的另一焦点M’,M’是抛物面OD的焦点,因此,经主反射面反射后的电波平行射出。由于天线是绕机械轴的旋转体,因此焦点M’构成一个垂直于天线轴的圆环,故称此天线为环焦天线。环焦天线的设计可消除副反射面对对电波的阻挡,也可基本消除副反射面对馈源喇叭的回射,馈源喇叭和副反射面可设计得很近,这样有利于在宽频带降低天线的旁瓣和驻波比,提高天线效率。缺点是主反射面地利用率低。

以上便是此次带来的抛物面天线相关内容,通过本文,希望大家对抛物面天线已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭