当前位置:首页 > 技术学院 > 技术前线
[导读]倍压器是一种特殊的电路装置,其主要功能是将输入的电压升高到更高的电压水平。这种电路通常用于需要高压的电子设备中,例如闪光灯、静电喷涂设备、某些类型的电源供应器等。

倍压器是一种特殊的电路装置,其主要功能是将输入的电压升高到更高的电压水平。这种电路通常用于需要高压的电子设备中,例如闪光灯、静电喷涂设备、某些类型的电源供应器等。

倍压器的基本工作原理是利用电容器的储能特性和二极管的单向导电性。当输入电压施加到倍压器上时,电容器开始充电。当电容器充满电后,二极管开始导通,将电容器上的正电荷转移到另一个电容器上,同时关闭输入电源。这样,第二个电容器上的电压就是第一个电容器电压的两倍。通过多个这样的阶段,可以实现更高的电压倍增。

倍压器可以分为多种类型,包括电压倍增器、电荷泵等。其中,电压倍增器是最简单的倍压器类型,它只需要一个电容器和一个二极管就可以实现电压的倍增。而电荷泵则是一种更复杂的倍压器,它使用多个电容器和二极管来实现更高的电压倍增,并且可以在不断循环的过程中持续提供高压输出。

接下来小编给大家分享一些倍压器电路图,以及简单分析它们的工作原理。

1、12V至24V倍压器电路图

当我们需要低压输入电源提供高压直流电源时,我们不需要实现新的电源,只需使用倍压器电路即可。这里的 12V 至 24V 倍压器电路采用很少的元件设计。

该电路将从低压输入交流电源提供高压直流电源。这里我们从降压变压器获取12V交流电源,通过桥式整流器将其转换为直流电源,然后使用三个电解电容器提高输出直流电压。


12V至24V倍压器电路图设计

此 12 伏至 24 伏倍压器电路作为示例给出,在某些地方,仅当您有 12V 直流电源时,才需要降压变压器或整流器。第一步是将 230V 交流电压转换为 12V 直流电压。该倍压器通过对高值电解电容器充电和放电来提供高电压。首先构建电路,我们需要确定倍频器电路的输入和输出电压,然后才能计算电解电容器的值。 倍压器的结果将是 2Vin,C1 和 C2 电容器在正周期和负周期充电,然后直流电源通过 C1 和 C2 电容器的放电电压使 C3 充电高于直流电源输入 (2Vin),并出现在输出端加载。

2、基于IC 555的倍压器电路图

这里给出了简单且易于构建基于 IC 555的倍压器原理图,该电路将输入偏置加倍为 5V – 9V 至 10V – 18V 输出。该电路可用作充电凸点或直流到直流升压转换器,当我们的设计包括步进电或伺服电机时,我们可以通过这个简单的电路简单地为这些电机生成偏置。我们不需要单独的电源电路。

该电路提供高频方波脉冲输出,C3 电容器保持脉冲电荷,D2 二极管对方波脉冲的正峰值进行整流,C4 获得峰值电压电荷,并通过 D1 二极管与输入偏置相结合,提供双倍的输出电压。


12V至24V倍压器电路图设计

简单的 IC 555 倍压器原理图采用非稳态多谐振荡器结构构建,该电路将提供取决于定时电阻器 R1、R2 和定时电容器 C1 的输出持续时间。

通过改变这些定时元件,我们可以获得不同级别的输出,但是定时器的非常低频或非常高频的输出不会给出最佳的输出电压。

该电路没有任何过流保护设置,负载电流输出稍不稳定,因此仅适用于低电流应用。

3、使用555定时器IC的倍压器电路图

从电路图中可以看出,该电路分为两个互补的部分。电路的第一部分涉及555定时器的使用,在非稳态模式下使用,以产生方波脉冲。

电路的第二部分实际上是使电压加倍的部分,由按电路图所示方式连接的 2 个电容器和 2 个二极管组成。 555 定时器有多种模式,我们今天决定使用非稳态多谐振荡器模式。


12V至24V倍压器电路图设计

该模式可用于使用两个电阻器和一个电容器的组合来生成大约 2KHz 的方波。从电路中我们可以看出,当定时器IC的3脚输出低电平时,二极管D1正向偏置,通过它对电容C3充电。

由于电容器直接由电源充电,因此电容器也会被充电至等于输入电压的电压。当定时器IC的脉冲为高电平时,IC的引脚3将显示高电平输出。这将使二极管 D1 反向偏置,并阻止电容器 C3 充电,电容器 C3 现在已充电至大约等于电源电压的电压。

当二极管D1反向偏置时,二极管D2将正向偏置,这将通过它对电容器C4充电。 C4 电容器也将利用电容器 C3 中存储的能量进行充电。现在,电容器 C4 的电压是输入电压的两倍,因为它通过两条路径充电,一条从最初充电至电源电压的电容器 C3 开始,另一条路径直接通过电源。

理论上,该电路的输出必须在输出端产生等于输入端电压两倍的电压,但实际上电容器的充电和放电不是无损过程,电容器中存储的能量并未完全传输到另一个电容,该电容的充电也不太理想。

对于输入电压为 5V 的实验,电路的输出约为 8.7 至 8.8V,而不是理论上的 10V。

4、简单的直流倍压器电路图

倍压器是一种电压倍增器电路,其电压倍增系数为二。该电路仅由两个二极管、两个电容器和一个振荡交流输入电压(也可以使用 PWM 波形)组成。这个简单的二极管电容泵电路提供的直流输出电压等于正弦输入的峰峰值。换句话说,峰值电压加倍,因为二极管和电容器共同作用,有效地使电压加倍。该电路最重要的参数如下表所示。请注意,由于时钟电路的容差,这些数据可能略有不同。


12V至24V倍压器电路图设计


12V至24V倍压器电路图设计

该电路显示了一个半波倍压器。在正弦输入波形的负半周期期间,二极管D1正向偏置并对泵电容器C1 充电 至输入电压峰值 ( Vp )。由于电容器C1没有放电路径 ,因此它保持完全充电状态,充当与电源串联的存储设备。同时,二极管 D2 通过 D1导通,对电容器 C2充电。

在正半周期期间,二极管 D1反向偏置,阻止C1 放电 ,而二极管 D2正向偏置,为电容器C2 充电 。但由于电容器C1两端的电压 已经等于峰值输入电压,因此电容器 C2 充电至输入信号峰值电压值的两倍。

5、有源直流倍压器电路图

这是用于增加直流电压的有源直流倍压器的电路图。


12V至24V倍压器电路图设计

该电路通过 12V 电源驱动 24 和 18VDC 继电器。使用该电路可以与几乎任何 PNP 或 NPN 功率晶体管配合使用,当然该晶体管的具体特性与元件列表中描述的晶体管类型类似。

定时器IC NE555用作多谐振荡器,产生1KHz频率的信号并馈送到功率晶体管进行放大。

6、使用IC 4093的12V至24V倍压器电路图

这是一个使用IC 4093的12V至24V倍压器电路图,该电路具有 10 至 20 mA 的输出电流能力,可以将您的工作电压提高高达 175%。使用 CD4093 双输入 NAND 施密特触发器 CMOS IC 的门 IC1a 和 IC1b 配置了方波振荡器电路。门 IC1c 作为输出缓冲器。 IC1 的缓冲输出为 Q1 和 Q2 互补晶体管供电。


12V至24V倍压器电路图设计

倍压器电路由 D1、D2、C2 和 C3 组成,由晶体管发射极的方波输出驱动,以提供升压输出。升压电路将在 12 伏电源下产生 24 伏、约 10 毫安的电压,并在约 20 毫安时产生约 18.5 伏的电压。确保将备用未使用门的输入连接到电路的接地线。

7、具有高电流输出的IC 555倍压器电路图

该第六个高电流倍压器电路提供了一种从 12 V 电池生成 24 V 输出的实用方法。它利用处于非稳态模式的 555 定时器来生成大约 1 kHz 的方波信号。


12V至24V倍压器电路图设计

555 定时器的配置使得当引脚 3 变高时,晶体管 Q1 变为导通,允许将电容器 C4 充电至接近 12 V。在此阶段,二极管 D1 防止电容器 C3 放电。相反,当引脚 3 变低时,晶体管 Q2 导通,从而以类似的方式对电容器 C3 进行充电,而二极管 D2 则防止电容器 C4 放电。电容器 C3 和 C4 上的组合电压产生所需的 24 V 输出。

在空载条件下,输出电压测量约为 24 V,但当连接吸收 500 mA 大电流的负载时,输出电压会降至约 20 V。需要注意的是,晶体管应采用散热器,以控制运行期间因高电流而产生的热量。通过用TIP122和TIP127替换晶体管可以进一步增加电流。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭