当前位置:首页 > 电源 > 电源
[导读]WBG的高频切换带来了与带宽和速度相关的挑战,这些挑战可以通过新的传感技术来解决。此外,氮化镓 (GaN) 和碳化硅 (SiC) 器件对短路条件的耐受性和电流传感要求不同。

WBG的高频切换带来了与带宽和速度相关的挑战,这些挑战可以通过新的传感技术来解决。此外,氮化镓 (GaN) 和碳化硅 (SiC) 器件对短路条件的耐受性和电流传感要求不同。

当使用GaN 器件时,具有捕获超快速短路事件所需带宽的电流传感器至关重要,因为 GaN 器件的短路耐受时间比 Si 和 SiC 器件短得多。因此,Si 基电源转换器中使用的电流传感器通常也适用于 SiC 应用,但不适用于 GaN。

例如,罗氏线圈 (RC) 在高功率应用中很常见,因为它们可以提供电流隔离、进行高电流测量并且易于集成。然而,RC 的带宽限制在数十 MHz,如下所述,人们正在努力设计带宽为 3 GHz 及更高的新一代 RC,以用于 WBG。

许多现有电流传感器的带宽有限,因此很难将其与 SiC 和 GaN 器件一起使用。SiC 器件 (BW SiC ) 的带宽要求超过 100 MHz,而对于 GaN 器件,BW GaN的带宽要求超过 500 MHz(图 1)。许多现有传感技术的带宽有限,因此难以或不适合 WBG 使用。因此,人们正在探索和开发新的电流传感技术。

图 1. BW SiC超过 100 MHz,BWGaN 超过 500 MHz,使用这些 WBG 设备时电流感应尤其具有挑战性。

本讨论主要关注 WBG 应用的带宽要求。然而,隔离能力、尺寸、测量直流电流的能力、EMI 抗扰度、热稳定性、精度、线性度、功耗和成本等因素差异很大。隔离对于高压应用至关重要,而 EMI 抗扰度通常是使用高频和高功率 WBG 电源转换器时的一个重要考虑因素。

目前大多数传感技术都难以达到几十kHz的带宽,即使是高带宽设备一般也限制在几十MHz,这对于许多WBG应用来说是不够的(图2)。

图 2. 所选电流传感方法的潜在带宽比较。

改进的罗氏线圈

对于高功率 WBG 应用,已经开发出一种改进的 RC,可将带宽从数十 MHz 扩展到 3+ GHz。在传统 RC 中,带宽受到自感和寄生电容相互作用引起的谐振的限制。新的传输线 (TL) RC 解决了电感和电容的限制。该传感器还采用双端阻抗匹配,以确保 GHz 级的高信号完整性。

设备集成电流检测

已经开发出不同的集成电流感应方法,用于增强模式、e 模式、(通常关闭)GaN 器件以及结合常开 GaN HEMT 和常关 Si MOSFET 的共源共栅器件。

开发了一种带有 17 MHz 带宽电隔离电流传感器的级联 GaN 半桥。当集成到半桥模块中时,新 IC 可提高开关频率并减小电容器和电感器的尺寸,从而有助于缩小解决方案尺寸。它由 650 V 耗尽型 GaN FET 组成,由使用 25 V N 沟道横向扩散 MOS FET (LDMOS) 的低传播延迟栅极驱动器切换。

LDMOS 还可用作电流感应的分流电阻。电流检测 LDMOS 的导通电阻因工艺、电压和温度 (PVT) 变化而变化,可使用参考 LDMOS 进行补偿。隔离栅上的数字校准环路可使电流传感器增益在工作温度范围内保持在 ±1.5% 以内

在另一个例子中,一个小型“电流镜”已与 e-mode GaN 功率 FET 并联单片制造。传感“镜像”FET 的电阻比主功率 FET 大 1,500 倍,因此电流传感的功率损耗可以忽略不计。此外,由于是单片集成,两个器件的导通电阻和温度效应可以抵消,不会影响电流传感精度。过流传感时间可以短至 30 纳秒,而传统方法则为 180 纳秒。

概括

使用 WBG 时,存在许多与电流感应相关的挑战。带宽和速度是其中最重要的两个。大多数现有的电流感应技术不适合与 WBG 一起使用。因此,有几个小组正在研究替代方案,从改进的 RC 到将电流感应与 WBG 设备集成的各种方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在连接方面,宽带隙半导体比传统硅器件具有显着优势,使其成为先进电信环境中应用的理想选择。随着时间的推移,碳化硅和氮化镓的重要性在这些材料的固有技术特性以及能源效率和热管理方面的优势的支持下,5G 基础设施的需求不断增长。...

关键字: WBG 5G 系统

机器人在制造和仓储设施中越来越普遍。工厂正在扩大移动机器人的使用,以帮助在无需人工干预的情况下自动将物品从 A 点移动到 B 点,同时还扩大协作机器人的使用,以提高工作效率并减少工人的疲劳。电流传感在移动机器人和协作机器...

关键字: 电流感应 机器人

在当今的半导体行业中,我们确实注意到各个工业 和汽车领域对提高效率的需求不断增长 ,这促使设计考虑因素发生重大转变,特别是在电流感应方面 要求。如果您正在阅读本文,那么您很可能是寻求更高效率解决方案的设计师队伍中的一员,...

关键字: TMR 电流感应

TMR在不断发展的技术进步领域,有一个概念以其彻底改变各个行业的潜力而脱颖而出:隧道磁阻 (TMR) 技术。虽然它的名字听起来可能很复杂,但 TMR 背后的原理非常简单,它提供了一系列好处,从提高效率到提高各种应用的可靠...

关键字: TMR 电流感应

TMR 技术代表了磁传感领域的范式转变。传统的霍尔效应传感器依赖于外部磁场影响下电荷载流子的偏转,而 TMR 传感器则不同,它利用了隧道磁阻现象。这涉及通过夹在两个铁磁层之间的薄绝缘层测量电阻的变化,其中电阻由外部磁场调...

关键字: TMR 电流感应

将电源设计作为整个系统架构的后续考虑这一历史思维模式正在发生改变。在电子设计的重点转向电源效率之前,通常的做法是在系统设计完成后简单地添加电源电路。这种做法在今天根本不适用,因为电源处理必须是电路控制和监控的固有部分。

关键字: 电源系统 电流感应

机器人在制造和仓储设施中越来越常见。工厂正在扩大移动机器人的使用范围,以帮助自动将物品从 A 点移动到 B 点,而无需人工干预,同时还扩大协作机器人的使用范围,以提高工作效率并减少工人疲劳。电流传感在移动机器人和协作机器...

关键字: 电流感应 机器人

使用碳化硅和氮化镓来满足电动汽车设计要求,如今已成为促进可持续发展的下一代汽车设计标准。空气动力学线条或更轻的材料不足以保证电动汽车的效率。为了满足效率和功率密度要求,电力电子设计师必须着眼于新技术。

关键字: WBG 电动汽车

电流测量是电力电子的一个组成部分。电源设计人员、电池管理系统和电动驱动器通常需要准确测量电流。电流传感器(不要与电流互感器混淆)可以测量直流和交流。电流传感器通常基于闭环霍尔效应或闭环磁通门技术。通常,无论电源电压如何,...

关键字: 电流测量 电流感应
关闭