当前位置:首页 > 厂商动态 > 英飞凌
[导读]在电源芯片的数字控制方法中,经常引入延迟环节。在引入延迟环节后,分析电路响应的方法特别是定量计算会变得比较复杂。本文通过对一种有延迟环节的burst控制方法的分析,提出一种可用于工程实践的方法,那就是通过电路分析,用在静态工作点作瞬态响应仿真的方法得到参数调试方向。

引言

在现代电源芯片设计中,模数结合的方法已经很常见。数字控制的方法的好处是:抗干扰能力强; 控制精确; 灵活性好; 系统的兼容性好; 方便实现电源管理。在数字控制模式中,可以轻松引入延迟环节,让控制更加灵活,高效。这种方法带来的问题是,在引入延迟环节后,在电源工程设计中,最常见的用零极分布来分析电路响应的方法不再适用。引入延迟环节后,通常传递函数用(G(s))来表示,但在真实过程中,τ 的不确定性让分析难度加大。在工程实践中, 仿真的办法,是快速理解与找到解决问题的有效手段。那么如何设定仿真模型可以得到理想的结果就很重要。本文将基于对一种burst控制方法的理解,给出一种在静态工作点作瞬态响应仿真的方法来获得对这类问题的理解与工程解决方法。

一种有延迟环节的burst控制方法

在这种控制方法里,如图一所示,当芯片进入主动BURST 模式后,芯片停止发出驱动脉冲,也就是图中VCS信号没有出现的区间,因为输出电压的下跌,反馈作用的拉电流(一般是光藕的作用)消失,芯片的FB引脚上的电压在内部电流的作用下开始快速上升,直到VFB_BON 信号,并重新唤醒芯片发出驱动脉冲,让下跌中的输出电压回归正常值。

上面的分析过程是一种设计想得到的理想状态。在实际应用中,我们会发现,在输出电容较小,不合理的反馈设计下,FB引脚上的电压快速上升的时间会远大于芯片理想的设计时间,输出电压的跌落幅度变得不可接受。理论上应该消失的从光藕反馈过来的拉电流并不会因为输出电压的跌落马上消失,这将导致,输出电压跌落过多,而且传统经典的适用于线性时不变系统的控制理论,无法很好的解释与解决这个问题。

burst 控制方法如下图

图一:burst 控制方法

常见的控制电路及静态工作点的分析

图二:常见反馈电路

如图二所示,这是一种常见的由TL431 与光藕组成反馈电路,反馈补偿是Ⅱ类补偿电路。输出电压为12V。静态工作点主要是确定两个反馈电容在稳态时的电压值。

首先定义光藕的工作状态: CTR :50%; VF: 1.45V

定义光藕的工作电流:IF: 0.33mA (备注:此电流由芯片工作状态决定)

定义TL431参考脚电压: Vref: 2.5V

定义输出电压:Vout=12V

反馈补偿的电容(C1,C2)上的电压为: Vout-VF-(IF*R5)-Vref

得到反馈补偿的电容(C1,C2)上的电压为: 12V-1.45V-(0.33mA x1k)-2.5V ≈ 8V

由此得到在12V稳态下,C1,C2上的电压为8V

仿真建立方法与等效仿真模型

实际工程样机为一台60W,12V/5A的电源,控制芯片的burst 控制方法如前图一所示

假定设计目标为进入burst态,重新发出驱动时,12V 输出电压的跌落小于0.5V,以此设定仿真的电压源,如图所示,12V 的输出,电压源取11.5V

反馈网络取值等同于实际电路取值

用二极管取代光藕,去光藕的CTR 动态

用流经二极管的电流等效芯片反馈(FB)电压的变化速率

设定反馈电容的初始电压为系统输出电压为12V 稳态时的初始电压(如图为8V)

选定SIMETRIX为仿真工具,分析模型选择瞬态分析。

建立的仿真电路如下图三所示。

图三:仿真电路

这种仿真分析方法的目的是用来帮助理解电路的工作与工程实践中的元件参数的调试方向。很明显,流经此二极管的电流会影响电源控制芯片反馈(FB) 脚上电压的上升,控制的目标就是,让这一路电流尽快掉到最小,以得到反馈(FB)电压的上升。

仿真结果如下:

电路的初始参数如图三所示

选取不同的反馈电阻值,如图三中的R2(3k-100k),对流经光藕的电流IPROB2分析,得到图四,图五,不同反馈补偿电阻值下的光藕电流随时间变化规律。

图四:不同反馈补偿电阻值下的光藕电流随时间变化规律

图五:不同反馈补偿电阻值下的光藕电流随时间变化规律(放大版)

选取不同的反馈电容值,图三中的C1(10nF-1uF) ,对流经光藕的电流IPROB2分析,得到图六。

图六:不同反馈补偿电容(C1)值下的光藕电流随时间变化规律

选取不同的反馈电容值,图三中的C2(1nF-100nF),对流经光藕的电流IPROB2分析,得到图七。

图七:不同反馈补偿电容(C2)值下的光藕电流随时间变化规律

仿真结果分析

从仿真的结果看,环路补偿的三个参数对流过光藕的电流,即同比于FB上升(延时)到重新开启输出驱动的时间,影响很不相同。电阻R2的选择影响很大,超过一定值后,开始收敛,影响开始变化不大。选好较大值的R2 后,与之串联的C1,对结果影响很小。而极点电容C2 ,值选的越大,结果越差。

从理论分析来看,如图三所示,当电源主控芯片停止发驱动, 输出下跌后,TL431的参考电压低于TL431的基准电压2.5V,TL431的阴极电压就会上升,这个上升的电压会通过反馈补偿网络R1,C1,C2补偿TL431的基准电压,如果基准电压被重新抬升到2.5V,TL431会重新导通,产生拉电流,这个电流会有部分流过光藕,影响了流过光藕的电流收敛速度,并与阴极上升的电压建立一定程度的动态平衡。这与仿真的结果是一致的。

实验验证

在实际应用中,C2的值一般都比较小,主要考虑R2 ,C1的影响,为此实验选择了一台60W,输出12V/5A 的电源,按照图三的反馈网络,选取不同参数,测试FB引脚上的电压快速上升的时间(TR),来验证仿真结果。实际测试中,为了得到系统进出Burst的条件,负载设为动态,从1A到0.3A动态变化。波形八到十三的图中,曲线C1为实测的FB 引脚上的电压波形,曲线C2为芯片的驱动波形。

1)选取参数如下:首先定义电容C2的值为1nF,定义电容C1 的值为100nF,选取不同的电阻R2 的值: 3K,9.1K,20K,75K。(结果见图八,图九,图十, 图十一)

2)选取参数如下:首先定义电容C2的值为1nF, 定义R2 的值为75K,选取不同的C1 的值: 1uF,10nF. (结果见图十二,十三)

实际测试结果如下表一和表二

图八:3K/100nF740Us

图九:9.1K/100nF 582.6US

图十:20K/100nF 427.8uS

图十一:75k/100nF 259uS

图十二:75K /1uF 276.6uS

图十三:75K/10nF250.6uS

结论

从实测的结果来看,反馈电压(FB)的上升时间与仿真的结果,变化的方向完全一致。因而,这种仿真方法能在这种有延迟环节的burst控制方法中得到响应时间的变化规律,在反馈补偿网络中,选择较大的反馈电值,与较小的极点电容,有利于让流过光藕的电流快速收敛至最小值。利用在静态工作点作瞬态响应仿真的方法可以快速得到近似工程解。

参考文献:

ICE5ARXXXBZS 数据表,英飞凌科技股份有限公司

DEMO 5GSAG 60W1演示板,英飞凌科技股份有限公司

Model 310, 0.01 Hz - 30 MHz Frequency Response Analyzer

开关电源环路中的TL431, Christophe Basso

Designing control loops for linear and switching power supplies, Christophe Basso

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电力电子领域,开关电源作为能量转换与分配的关键设备,其性能的稳定性和效率的提升一直是研究的重点。特别是在瞬态响应方面,开关电源需要能够快速、准确地响应负载或输入电压的变化,以保持输出电压的稳定。为了实现这一目标,小信号...

关键字: 小信号模型 开关电源 瞬态响应

该稳压器在其输入 (C IN ) 和输出 (C OUT )处使用电容器来增强其高频响应。您应该仔细考虑电容器的电介质、值和位置,因为它们会极大地影响稳压器特性。

关键字: 电压调节器 负载 瞬态响应

摘要:以基础脉冲激励下的转子系统为研究对象,对转子系统进行梁单元有限元建模,对基础脉冲激励运用时域模拟法进行了模拟,运用Newton-Raphson法求解轴承非线性力和转子系统运动微分方程,建立了一种高效求解含非线性转子...

关键字: 非线性求解 转子动力学 瞬态响应

尽管输出电压随负载的变化在美学上令人不快,但该模型相对于前一个模型的优势是巨大的。它包含相同限制之间的输出电压,具有几乎两倍的 ESR,并且当我们将它们与允许的偏差进行比较时,误差源和纹波电压会变小,这通常是这种情况。将...

关键字: 开关电源 瞬态响应

开关电源通常具有严格的静态调节规范。使用广泛可用的精密基准,我们无需任何初始调整即可在工作温度范围内轻松实现 ±1% 的精度。我们还必须处理电源的动态调节规范,制造商通常将其指定为瞬态负载的最大允许偏差,该瞬态负载具有规...

关键字: 开关电源 瞬态响应

如何设计一个无偏执电压的三极管放大电路。其中讲到,设计一个三极管放大电路的主要工作就是设计三极管的静态工作点。

关键字: 三极管 放大电路 静态工作点

在日常工作中,我们认为必须有一种简单的方法来将电源控制环路的带宽与其瞬态响应相关联,但从未真正找到一个很好的参考资料来简单地定义它。 这似乎是一个简单的问题,应该有一个简单的解决方案。对于电路来说带宽越高,环路响应越快...

关键字: 带宽 瞬态响应

摘要:线性功率放大器的线性度受功放管的静态工作点影响很大。然而,在功放管的实际工作中,由于功放管的门限开启电压随温度上升会降低,从而导致静态工作电流增大并使得线性度恶化。文中给出了一种LDMOS功放管静态工作点的温度补偿...

关键字: LDMOS 线性度 温度补偿 静态工作点

人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如数字电源。

关键字: 数字电源 模拟电源 瞬态响应

你知道绝缘型反激式转换器输出瞬态响应吗?输出电压的重要特性之一有瞬态响应特性。该瞬态指输出电流,也就是负载电流急剧变动,因此正确来说是输出电压负载瞬态响应特性。英语术语有时会直接使用片假名,瞬态响应称为トランジェントレス...

关键字: 反激式转换器 输出电压 瞬态响应
关闭