当前位置:首页 > 厂商动态 > 西门子EDA
[导读]在人工智能 (AI) 革命的风口浪尖,人们开始担忧 AI 是否会取代人工。然而,仔细想想,将 AI 应用于零部件制造并不意味着完全用自动化取代人员和流程;相反,AI 能让效率倍增,通过增强现有系统来提升生产效能。以计算机辅助制造 (CAM) 系统中的智能协作为例:通过分析零部件的 3D 模型并与复杂软件进行交互,AI 能自动生成刀具路径优化方案。当传统生产工艺与智能数据采集相结合时,AI 与全维度数字孪生技术将成为实现下一代数据驱动型制造的核心推动力。

(图片来源:西门子)

人工智能 (AI) 革命的风口浪尖,人们开始担忧AI 是否会取代人工。然而,仔细想想,将AI应用于零部件制造并不意味着完全用自动化取代人员和流程;相反,AI 能让效率倍增,通过增强现有系统来提升生产效能。以计算机辅助制造 (CAM) 系统中的智能协作为例:通过分析零部件的3D模型并与复杂软件进行交互,AI能自动生成刀具路径优化方案。当传统生产工艺与智能数据采集相结合时,AI与全维度数字孪生技术将成为实现下一代数据驱动型制造的核心推动力。

工业级 AI 的必要性

尽管 AI 为零部件制造带来诸多优势,应用仍需审慎。在消费级领域,偶发的错误或 AI 幻觉也许不会造成严重损失;但是在工业场景中,动辄涉及巨额资金乃至人身安全,生产过程中的任何失误都可能导致灾难性后果。

要在工业中发挥 AI 的优势,AI 本身必须达到工业级标准。模型返回的结果必须稳健、可靠且可复用。打造工业级 AI 需要多个步骤,包括建立持续测试框架以确保模型能给出预期结果、制定自动化流程来检查正确性,以及设计软件让人类在关键任务中保持参与。有了坚实的基础,工业级 AI 便可通过三种方式提升零件制造水平:优化制造流程、分析制造数据与工艺以及创造制造效益。

AI 优化制造

AI 技术已经在机械加工车间及各类生产环境中执行多项任务,在减少人力与材料浪费的同时提升生产效率。当前 AI 的应用领域包括:

通过借助IndustrialCopilot 这样的工具,利用自然语言处理 (NLP) 与维护手册、生产数据等进行交互。

生成以数据驱动的洞察,增强对生产流程中能源节约的理解,从而实现能源优化。

实现 AI 驱动的 CAM 操作编辑,以更快地完成工作。

数据驱动下的效益升级

更先进的 AI 与车间、设计及生产数据相连接,将通过强大的分析能力实现从工作流到人体工学的全方位优化。在西门子 Insights Hub 等平台集成这些数据后,AI 可深度应用于从质检报告到车间排产的全流程,这种深度分析将不断解锁新的优化空间。

西门子 Insights hub 中的 Production Copilot 提供清晰的操作员指导,

通过数据和经验推荐行动,消除对下一步的猜测。

(图片来源:西门子)

AI提升生产效率的一个重要途径是预测性质量分析。通过分析缺陷数据并将其与智能设备提供的生产和性能数据相关联,可以构建能够早期识别制造过程中缺陷关键指标的 AI 模型。早期发现这些错误将减少时间和材料的浪费。

除处理海量数据集外,AI能加速特定场景的专业化数据分析,例如优化工人的人体工学设计。一些工人的重复性动作,尤其涉及弯腰或伸展动作时,极易造成身体劳损。虽然工人对重复动作具备基础的判断力,但预判其长期影响则困难得多。通过应用基于人体运动学和人体工学数据训练的 AI 模型,仅需单张图像即可评估特定动作序列的人体工学表现。AI 人体仿真能高效解析高风险场景,这些分析结果可即时反馈至数字孪生系统,快速设计出符合健康要求且高效的工作站——将零部件与工具布置在符合人体直觉的触达范围内。

创造制造收益

生成式 AI 作为当前最广为人知的AI 形式,具备前所未有的类人对话能力。在工业领域,生成式 AI 将成为连接人类与技术的桥梁,显著降低复杂工具的使用门槛。未来,生成式 AI 将成为无代码/低代码平台的核心组件,通过自然语言处理实现复杂机械的编程控制。

当前,使用 CAM 软件将 3D 模型转化为可用 G 代码仍是复杂耗时的过程,需要操作者同时具备 CNC 加工和特定软件的专业知识。AI 驱动的协同系统能大幅加速 CNC 程序创建、切削参数计算及刀轨验证。

NX CAM中的copilot自动化数控编程过程,可节省高达80%的工程时间。

(图片来源:西门子)

虽然短期内仍离不开人类 CNC 专家的参与,但以 CAM copilot形式存在的 AI 技术,能够通过降低工具使用门槛和自动化大量人工密集型操作来显著加速这一流程。该智能系统可自动生成 CNC 机床的加工策略,将编程时间从数小时压缩至几分钟。

只需在3D模型上选择一个特征,CAM copilot即可生成多种操作、刀具、进给速度等组合建议,供用户审核后自动填写到软件中。与此同时,它还能通过训练了解生产设备,实时验证特定设计和刀具路径是否能够在指定机器上安全生产。

这些类型的生成式 AI 工具还可以作为知识库,从专家用户和过往工作中学习,基于车间的最佳实践使用制造方法。凭借强大的工业级 AI 部署,可以确保专有知识的安全,并使其更易于被新员工和资深员工获取,宝贵的专业知识不会丢失。

用工业 AI 分析、优化和生成

随着制造业数字化持续推进,无论企业规模大小,能否利用数据实现质量、可持续性和效率目标也愈发重要。AI 正在成为分析、优化和推动制造业改进的重要手段。从简单洞察到全功能辅助,AI 将成为实现数据驱动型制造的关键要素,它能将原本未被利用的 1 和 0 转化为全面提升效率的宝库。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭