当前位置:首页 > 电源 > 电源AC/DC
[导读]设计一个移动电源的一个关键设计挑战是通过EMI测试。电子工程师经常担心EMI测试失败。若电路EMI测试多次失败,这将是一场噩梦。您将不得不夜以继日地在EMI实验室工作来解决

设计一个移动电源的一个关键设计挑战是通过EMI测试。电子工程师经常担心EMI测试失败。若电路EMI测试多次失败,这将是一场噩梦。您将不得不夜以继日地在EMI实验室工作来解决问题,避免产品推出延迟。对于诸如移动电源的消费类产品,设计周期短,而EMI认证限制又严格,因此您想添加足够的EMI滤波器顺利通过EMI测试,但您又不想增加空间,也不想在电路方面增加过多成本。这似乎很难兼顾两者。

TI design低辐射EMI升压转换器参考设计(PMP9778)提供了这样一个解决方案。它可以支持2.7 - 4.4V输入电压、5V / 3A、9V / 2A和12V / 1.5A的输出功率,且只适合移动电源应用程序。通过布置和布局的优化,此TI设计能获得的裕量比在EN55022和CISPR22 B级辐射测试中高出6分贝。让我们来看看设计过程。

确定关键电流通路

EMI从电流变化(di / dt)循环的高瞬时速率开始。因此,我们应在设计之初就区分高di / dt关键路径。为了实现这些目标,了解开关电源中的电流传导路径和信号流是重要的。

图1所示为升压转换器的拓扑结构和临界电流路径。当S2闭合,S1打开时,交流电流流经蓝色环路。当S1闭合,S2打开时,交流电流流经绿色环路。因此,电流流经输入电容器Cin,且电感器L是一个连续电流,而电流流经S2、S1,且输出电容器Cout是脉动电流(红色环路)。因此,我们定义红色环路为临界电流路径。此路径具有最高的EMI能量。我们在布置期间,应尽量减少由它包围的区域。

 

 

图1. 升压转换器的临界电流路径

最小化高di / dt路径的环路面积

图2所示为TPS61088的引脚配置。图3所示为TPS61088临界电流路径的布局示例。NC引脚表示设备内部没有连接。因此,他们可连接到PGND。从电气角度讲,将两个NC引脚连接到PGND接地平面有利于散热,并能降低返回路径的阻抗。从EMI角度讲,将两个NC引脚连接到PGND接地平面使得TPS61088的VOUT和PGND平面更接近彼此。这使得输出电容的布置变得更容易。从图3可以看出,将一个0603 1-UF(或0402 1-UF)高频陶瓷电容COUT_HF尽可能靠近VOUT引脚可导致高di / dt环路的面积最小。

 

 

图2. TPS61088引脚配置

 

 

图3. TPS61088关键路径布局示例

来自距接地平面10米距离的高di /di回路的最大电场强度可通过下面的公式计算:

 

 

图4所示为使用和不使用COUT_HF的辐射EMI结果。在相同的测试条件下,辐射EMI通过COUT_HF改善了4dBuV/m。

 

 

图4. 带/不带COUT_HF的辐射EMI结果

将一个接地平面置于关键路径下

高跟踪电感导致辐射EMI差。因为磁场强度与电感成正比。将固定接地平面置于临界跟踪的下一层上可以解决此问题。

表1给出了不同PCB板上的给定跟踪电感。我们可以看到,对于信号层和接地平面之间0.4 mm绝缘厚度的四层PCB来讲,其跟踪电感比1.2毫米厚的2层PCB的跟踪电感小得多。因此将距离最短的固定接地平面置于关键路径是降低EMI的最有效的途径之一。

图5所示为2层PCB和4层PCB的辐射EMI结果。根据相同的布局和相同的试验条件,辐射EMI通过4层PCB可改善10dBuV /m。

 

 

图5. 一个2层PCB和一个4层PCB的辐射EMI结果

添加RC缓冲器

若辐射水平仍超过要求水平且布局不能再提高,则在TPS61088 SW引脚添加一个RC缓冲器和电源接地有助于降低辐射EMI水平。RC缓冲器应放在尽可能接近开关节点和电源接地(图6)的位置。它可以有效地抑制SW电压环,这意味着在振铃频率条件下,辐射EMI得以改善。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭