当前位置:首页 > 电源 > 电源AC/DC
[导读]数/模转换器是一种将数字量转换成模拟量的器件,简称D/A转换器或DAC(Digital to Analog Con-vetter)。是数字控制系统中的关键器件,用于微处理器输出的数字信号与电压或电

数/模转换器是一种将数字量转换成模拟量的器件,简称D/A转换器或DAC(Digital to Analog Con-vetter)。是数字控制系统中的关键器件,用于微处理器输出的数字信号与电压或电流等模拟信号的转换,并送入执行机构进行控制或调节。

1 芯片的主要性能特点

T1公司的DAC9881是目前最高精确度的D/A转换芯片。串行输入、电压输出、单电源供电。它采用成熟的HPA07 COMS加工技术,分辨率达到18 b,采用标准的SPI(Serial PeripheralInterface)串行数据输入方式,输入数据时钟频率可达50 MHz,最低有效位稳定至1 LSB,时间仅为5μs,满足DSP,MCU,FPGA等系统的快速性要求。输出电压信号的最大值取决于外部参考电压+VREF,它的范围为2.7~5. 5 V;单通道输出;持续工作时典型功耗为4 mw;最大积分非线性为±2 LSB(INL);最大微分非线性为±1 LSB(DNL);具有超宽的工作温度范围:-40~+125℃。该DAC芯片的特点是具有线性性质优良,噪音低和输出转换特性快速;该芯片通过采用复杂的低噪音缓冲器,使噪音比采用外接元器件构成同等精度的DAC转换器减少75%,其噪音比为24 nV/Hz。配置可编程挂起(低电压模式)和运行功能,可以使系统在不需要进行D/A转换时将DAC芯片挂起,此时输出近似为0.000 0 V,功耗降到125μW,直到接收到写命令操作为止。这样既可显著地降低系统的功耗,同时还能够保证在接到写命令操作后正常写人数据,无需外加电源控制电路,简化设计步骤。

2 芯片工作原理

DAC9881的数据输入方式为串行输入,即工作节拍SCLK是和串行二进制数码定时同步的,输入端不需要缓冲器,串行二进制数码在时钟同步下控制D/A转换器逐位工作。因此,转换1个24位输入数码需要24个工作节拍周期,即需要24个时钟周期。串行数据输入后,经过逻辑网络,将串行数据转换为并行数据,进入并行T型电阻网络(分段式R一2R网络),通过保证电阻R的阻值一致性,用微调技术实现对积分线形度及微分线形度进行微调,以实现最优化的积分线性度性能,然后经运算放大器后输出电压信号。内部结构图如图1所示。

3 引脚及引脚功能

3.1 DAC9881引脚

DAC9881引脚如图2所示。

3.2 主要引脚功能介绍

主要引脚功能介绍如表1所示。

4 芯片的电气特性

4.1 输出电压

对于高精度DAC,系统接地和导线电阻的问题变得尤为重要。如该DAC芯片为18位转换器,当系统的满量程输出为5 V时,1个LSB的值仅为19μV。输出电压范围:

式中:VREFH为参考电压上限;VREFL为参考电压下限;CODE为输出数据位,范围0~262 143;G为增益,由GAIN引脚设定。

4.2 数据输入移位寄存器

当LDAC输入为低电平,片选信号CS为低电平时,每一位输入数据在串行时钟SCLK的上升沿时写入SPI串口移位寄存器,如图3所示。

4.3 数据传输格式

每个写周期中,向SPI串口移位寄存器写入24位二进制数据,其中D17(MSB)…D0(LSB)为有效数据位,D23…D18为无效数据位,状态任意。其数据格式如表2所示。

5 典型应用

在控制领域中,如雷达伺服系统、电力电子器件的控制端给定等大多采用的是单极性给定,给定精度的高低直接影响着系统的性能指标。考虑到转换速度越高越好,系统前端可以采用MCU,DSP,FPGA等高速器件作为核心控制单元。单极性输出的典型电路如图 4所示。若要设计任意产生电路,只需将上图4中的反馈环节去除,当要求双极性输出时,电路的设计结构如图5所示。

例如,式(1)中当RA=2RB=2CC时,VO=4VOUT-2VREF,这样就可以构成输出为-2VREF~+2VREF的双极性电压信号。

6 结 语

DAC9881是一款高性能的数/模转换芯片,具有串行输入、并行处理、电压输出特点;精度高,速度快,可以大大地减少对数据总线的占用,将广泛地应用于高精度的控制场合和波形产生电路,如伺服控制、波形产生、精密仪器等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭