当前位置:首页 > 电源 > 电源AC/DC
[导读]模拟前端处理的对象是信号源给出的模拟电视、模拟声音信号,其主要功能包括以下几个方面:信号放大:当接收到的信号过于微弱,满足不了系统载噪比要求时,在前端要采用低噪

模拟前端处理的对象是信号源给出的模拟电视、模拟声音信号,其主要功能包括以下几个方面:信号放大:当接收到的信号过于微弱,满足不了系统载噪比要求时,在前端要采用低噪声放大器进行放大,以提高载噪比。频率变换:为了实现传输频道的某种配置,有时也为了避开某种干扰,前端需要对某些频道进行变换。例如,早期的有线电视系统基本上在VHF频段内传输信号,对于个别在UHF频段内播出的节目,可使用频道变换器,将其从UHF频段转换到VHF频段。另外,对于距离电视发射塔较近的地区,由于电视信号很强,用户的电视机会直接感应到强信号,该信号与有线电视前端接收下来的同一电视信号都会进入电视机,但两者存在时间差,将在电视机图像上形成不易消除的重影,因此,也需要将该频道信号转换成另一频道信号。调制、解调:在接收卫星、微波信号时,需先对其进行解调,恢复视、音频信号,然后再将其调制为选定频道的射频信号;自办节目也需要经过调制后才能进入混合器;另外,一些开路信号也采用解调-调制的变换方式来进行处理。邻频处理:有线电视系统采用邻频传输可以充分利用频谱资源,在有限的频带范围内尽可能多地传输节目,但同时也会造成邻频干扰问题。因此需要在前端采用各种技术措施来进行邻频处理,最大限度地消除邻频干扰。邻频处理主要包括声表面波滤波、锁相环路(PLL)频率合成技术、图像和伴音分通道处理、A/V比可调技术等,用来完成调制、解调、频率变换、混合等功能。电平调整与控制:用于各频道的电平进行调整和控制,使频道内和频道间的电平波动不超过要求的范围。混合:混合的目的是将所有处理后的信号复合在一起,以便用一条线路传输。AFE选型

现在许多新颖的模拟前端(AFE-Analog Front End)瞄准了各种不同应用:有线和无线通信、工业电子、消费类产品,出现了专用和通用AFE来满足多种市场需求。


一般AFE为通用单元。AFE可以是少数为数字电路、多数为模拟电路器件,用一个简单的状态机控制多路转换器,将信号传输给一个或多个数据转换器。AFE也可以是多数为数字电路、少数为模拟电路器件,包括一个或多个数据转换器并带有其他微控制器外设。所有AFE的共同功能特点是它们的数据转换器(DAC和ADC)。其DAC结构没有大的差别,但ADC结构可以是Δ-Σ、连续渐近和流水线架构。每种架构在容吐量、分辩率、等待时间、滤波要求、功耗和硅占位面积方面均有局限性。不同的转换器架构在不同的目标应用中有不同的功能。


通用AFE


一些公司,包括ADI、Linear、Maxim和Silicon Labs采用硅CMOS增加仪器型ADC编程能力。其差别在于编程能力的类型一状态机或微控制器。如Linear 公司的ADC在输入具有引脚短接编程多路转换器,这种性能受到过程控制系统或传感器设计工程技术人员的喜爱。


不同的供应商对多路ADCAFE有不同的设计。这包括引脚短接或寄存器控制(通过并行接口)编程单或多数据转换器。


Linear 公司的LTC1850/51AFE片上8通道多路转换器向10或12位连续渐近ADC传送信号(见图1)。AFE具有扫描模式,可在8个多路转换通道间重复循环,并用连续扫描的16位地址和配置按顺序编程。也可以读回时序存储器。所有这些均通过短接AFE引脚来控制。


LTC1850家族中的每一款8位和10位产品都包含一对单连续渐近ADC和内置8通道多路转换器。绝对采样率可达1.25Msamples/s。但是,实际的采样率取决于采样的输入数量。也就是说,如果设计仅要求两个输入通道,那么,每个通道应连接多路转换器的4个输入,而每个通道的取样率应为625Ksamples/s。当每个多路转换器通道有不同的输入时,吞吐量为156Ksamples/s。


ADI公司的AD7266采用类似的设计理念。该器件集成了两个独立的12位连续渐近ADC,允许同时采样和转换两个通道,吞吐率达2Msamples/s。每个ADC前面加有一个3通道多路转换器和一个抵噪声、宽带跟踪保持放大器(可处理超过10MHz的输入频率)。每个ADC有两个模拟输入,可编程3个全差分对或6个单端通道。每个通道的转换结果,可在单独数据线上同时读取或在同一数据线上连续读取。


Maxim公司的1402多路转换的信号较少,但分辨率较高,用Δ-Σ调制器和数字分样滤波器可以达到16位精度(图2)。数字滤波器的用户可选择取样因数,允许降低转换分辨率以换来较高的输出数据率。在输出数据率480sps可实现真正的16位性能。可设置MAX1402的输入多路转换器,用来管理3个全差分信号或6个伪差分信号。多路转换器的后面是两个斩波放大器、一个可编程增益放大器(PGA,增益1~128)、一个用于消除系统漂移的粗DAC和一个2阶Δ-Σ转换器。1位数据流被可配置为SINC1或SINC3的集成数字滤波器滤波。转换结果可通过一个SPI/QSPI兼容的3线串行接口得到。


Silicon Labs的C8051 F350采用“多数字,少模拟”设计,这是公司最新推出的带片上ADC的8051兼容MCU。它集成有8通道24位100ksamples/s转换器、50MHzCPU。外设包括双8位DAC和温度传感器以及串行通信外设(UART,SPI,SMBus串行口)。


同样,Microchip 公司的PIC16F684、PIC16F688和PIC12F683 PIC基MCU 包含10位连续渐近ADC和8输入多路转换器。


更为复杂的是Cypress公司的pSoC家族,具有一组复杂的数字和模拟单元,完全可以电路内重新编程。一个pSoC IC模拟单元可包含多达4个ADC(6~14位分辨率,可选择流水线、Δ-Σ和连续渐近架构);2、4和6极带通、低通和陷波滤波器;6~9位DAC;PGA。pSoC设计工具包括2个预配置Δ-Σ转换器模型。一个具有8位分辨率,64X过取样并适合32ksamples/s。另一个具有11位分辨率,256X过取样,适合7.8ksamples/s。


在AFE中采用内插设计相对较简单,因此,将该功能内插到AFE中较为可取,并简化了数字主机芯片对其进行的输送。这也意味着芯片间的接口可以更低的速率工作,清除了可能的电磁干扰源。


ADI公司的AD9862是一款双12/14位、128Msamples/s ADC,带有取样滤波器和数字Hilbert滤波器。当滤波器使能时,它执行一次Hilbert转换,将单通道输入数据分解为I和Q分量,用做图像抑制结构部分。然后,用片上数字复杂调制器对复杂数据做进一步处理。某些AFE也可能包括直接数字合成和数字混频器,所以在接收通道,D-S转换内含数字滤波。D-S转换在窄带无线应用中特别有用,因为它具有高选择性和非常高的瞬时动态范围。


根据转换器结构进行设计的工程技术人员可能会惊奇地发现,D-S转换采用的频率达到几兆赫兹。开始,D-S应用目标是高分辨率、慢速响应应用(如称重);后来应用到音频领域。工艺的进步使得D-S结构将取样速度增加到20Msamples/s,使有效带宽增加到2.5MHz,同时提供16位有效分辨率。


另一方面,尽管D-S转换在窄带无线应用(通过分立PF信道的语音通信)中颇具吸引力,但是,其架构不适于宽带应用。相反,连续渐近转换器通常用于工业控制和测量中的高速带宽应用。现在,16位300Msamples/s连续渐近转换器较为普遍。


流水线转换器成本较低,可用于只需8位或12位分辨率和10Msamples/s转换率的应用。流水线架构导致等待时间,但具有较高的芯片处理效率。一个12位流水线转换器需要4095个比较器和一个大芯片,导致芯片功耗很高。


相比较而言,通过分级转换,流水线转换器所需要的比较器数量大大减少,但要以牺牲6个或7个等待时间周期为代价。等待时间只是反馈控制系统中的一个潜在问题。在通信系统中这不是问题,因为转换器的等待时间对于整个信号链络的延迟来说是微不足道的。


在此之前,人们曾讨论过插入式滤波器放在DAC之前的原因。尽管Maxim公司的MAX1402在D-S转换器之后包含一个分样滤波器,但不会在流水线ADC的输出有一个分样滤波器。从经济角度看,在采用价廉ADC时可以在模拟域加入一个表面声波滤波器和另外滤波器。


有线通信用AFE


DSL和其他有线通信模式是AFE几个较大市场之一。ADI、TI、STMicro等公司具有许多瞄准此应用领域的产品。


现在,由于有标准约定,所以,有线网络代表着一种新的具有挑战性的领域。ADI公司的AD9865支持有线网络、VDSL和HPNA(家用电话线网络联盟)宽带调制解调器。STMicro公司推出一种新AFE做为2芯片组的一部分,用于USB基速率自适应ADSL调制解调器。MTC20154由一个12位DAC和一个13位ADC(二者运行在8.8Msamles/s)组成。在该芯片组中,几乎所有的数字处理由MTC20455芯片执行。


无线通信用AFE


蓝牙和IEEE802.11标准继续推动着无线AFE市场。STMicro公司的STLC2150是一款完全集成的蓝牙单芯片无线电收发器,它与各种标准Blue RF接口基带处理器协同工作,这包括STLC2410(见图3)。


TI的AFE8201(图4)是更为通用的AFE,用于软件无线电中的IF接收信道。它取样窄带(2.5MHz或更低)IF信号并数字混频、滤波和分样信号到基带。


工业电子用AFE


ADI公司的ADS7869是瞄准工业市场的,它是一个12通道3ADC马达控制前端。该AFE提供3个全差分输入,每个输入连接到窗口比较器和符号比较器。芯片并行端口的数字接口可配置成不同的标准。此外,有一个用于控制的串行外设接口(SPI)。


信息家电用AFE


Philips公司的TDA875A是一款3路8位视频数据转换器,用于液晶显示(LCD)监视器、投影机和TV。该IC接收模拟RGB或YUA信号,并将它们转换为数字输出,用于分辨率高达QXGA(2048×1536,在85Hz)的高速平板显示或高保直电视。在成像链路的输入端,ADI公司为CCD和CMOS数字成像应用提供AFE定制产品。


结语


混合信号AFE芯片极其适合各种应用(专用或通用),用AFE可加快系统设计和产品时间。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

根据Yole Development 2020年报告,医疗健康可穿戴产品的市场规模从2019年的3.47亿件,将持续增长到2025年达到7.54亿件,这个增长主要的驱动在医疗类穿戴市场和消费类穿戴市场。

关键字: ADI 可穿戴 模拟前端 PMIC

模拟前端处理的对象是信号源给出的模拟信号,其主要功能通常包括信号放大、滤波、接收ADC和/或发送路径数据转换(DAC)等,对于特定应用领域可能还包括频率变换或者调制解调等其他功能。

关键字: 模拟前端 电路 模拟信号

模拟前端处理的对象是信号源给出的模拟信号,其主要功能通常包括信号放大、滤波、接收ADC和/或发送路径数据转换(DAC)等,对于特定应用领域可能还包括频率变换或者调制解调等其他功能。而放大器和ADC是此类应用中最重要的两个...

关键字: 模拟前端 数字信号

  可携式医疗电子低成本可望再缩减。为满足可携式医疗电子对成本、功耗的要求,亚德诺(ADI)推出专为可携式心律监测器打造的低成本、单导程(Single-lead)类比前端AD8232。

关键字: adi afe 医疗电子 医疗芯片

  ADI公司的低功耗五电极心电图(ECG)系统采用ADAS1000模拟前端(AFE)。 ADAS1000能够测量心电图(ECG)信号、胸阻抗、人工起搏信号、导联连接/脱落状态,并将此信息以数据

关键字: FPGA adi afe 心电图

  日前,德州仪器 (TI) 宣布推出业界第一个用于光度测定的全面集成型模拟前端 (AFE) 产品系列。最新模拟集成电路 (IC) 符合 TI HealthTech 愿景,可帮助工程师设计用于改

关键字: afe 医疗保健 医疗芯片 家庭保健

  作者:凌力尔特公司信号调理产品设计经理 Mike Kultgen   混合动力电动型汽车电池中的电子器件是提高性能和安全性的关键。在集成电路设计领域的新技术使电池组设计师能进一步提高

关键字: 控制器 模拟前端 汽车电池 电动汽车 电磁干扰

  飞思卡尔的医疗模拟前端参考平台是一套完整的便携式医疗设备解决方案,为设计人员提供了快速开发工具,并演示了飞思卡尔技术在最终产品应用中能够发挥 的潜力。 它提供了便于开发的硬件和软件,有助于各种医疗

关键字: afe k kinetis MCU 医疗设备 飞思卡尔

  全球领先的整合单片机、混合信号、模拟器件和闪存专利解决方案的供应商——Microchip Technology Inc.(美国微芯科技公司)宣布推出具备业界精度领先的

关键字: afe Microchip 智能电表

  从二十世纪七十年代起至今,我国的工业机器人数量已经比较庞大,在机器人的某些技术方面也达到了世界先进水平,但总体来说,西方发达国家的工业机器人技术仍领先我国很多年。究其原因不难发现:我国研究工

关键字: afe maxim petaluma
关闭
关闭