当前位置:首页 > 电源 > 电源AC/DC
[导读]我们乘坐的航班刚刚开始下降高度,这时坐在我旁边的一位先生转过头来和我聊起工程学——他看到我在阅读一本工程学期刊。这位邻座的先生说,他是电气与电子工程师

我们乘坐的航班刚刚开始下降高度,这时坐在我旁边的一位先生转过头来和我聊起工程学——他看到我在阅读一本工程学期刊。这位邻座的先生说,他是电气与电子工程师协会 (IEEE) 会员,而他原来的志向就是希望能够成为某个标准委员会的一员。我问他正致力于哪种标准的制定工作—它与电站安全有关。直到飞机在航站楼前停下来,我们才结束了对话,然后分道扬镳。讨论间,我谈到标准非常重要,并以我所在行业的角度告诉他,我是多么吃惊的感到直到2000年我们才有了一个IEEE标准,才能对模数转换器 (ADC) 的规范和测试方法进行定义。这一点值得我们注意,因为至少在 20 世纪 20 年代模数转换便为人们所熟知,而商用 ADC 的出现却是在 20 世纪 60 年代[1]。数十年以来,ADC 制造商们都在对这些设备的规范进行定义,并完全独立地各自对这些规范进行测试。自然而然地,形成了一些关于如何测试的“标准”,但仍然没有由实体标准机构发布的标准指导原则。第一次真正的 ADC 标准制定工作开始于 1980 年,最终发布了 IEEE1057 [2]标准,也即后来的 IEEE1241 [3]。IEEE1241 专门针对 ADC 器件本身,其与一整套的数据采集或者记录系统完全不同。IEEE1241-2000 是第一种真正为 ADC 组件制造厂商制定的标准;该标准于 2010 年更新。图1理想的ADC 传输函数均匀排列各个转移点(宽度刚好为一个最低有效位LSB)ADC 评估的主要任务便是确定其传输函数。理想情况下,一个转换器有一个同图1所示类似的传输函数。图1 显示了一个三位转换器的传输函数。在理想的转换器中,每码宽度完全相同,并且可以画一条直线穿过每个代码“高原”的中点。实际上,却并非总是这样—由于实际传输函数不同于理想情况,因此确定转移点和代码宽度对ADC测试和特性描述至关重要。为了寻找到真正的传输函数,IEEE标准建议使用几个可能的测试步骤和方法。一种方法是利用复杂的伺服环路系统,其要求数模转换器 (DAC) 拥有比受测 ADC 更高的分辨率。另一种方法是使用一个正弦波振荡器,但必须具有比受测 ADC 预计信噪失真比 (SINAD) 高至少 20dB 的总谐波失真和噪声 (THD+N)。例如,一个理想的 16 位 ADC 拥有 98 dB 的信噪比 (SNR) 且没有失真(毕竟它是理想情况)--那么 SINAD 就为 98dB。要想对该 ADC 进行测试,要求使用一个 –118dB 以上 THD+N 的振荡器。当你观察高分辨率 ADC时,如果正弦波发生器无法单独完成任务,则其可能会要求使用滤波来获得纯光谱信号。找到这种高分辨率 DAC 或者纯光谱振荡器,并且制造出所需的复杂测试设备,对于广大 ADC 制造厂商而言,他们都愿意这样做,而且一般也都具备这样的能力。这些仪器中的一些十分昂贵,但如果你的业务就是制造 ADC,那么这些投资都是值得的。但是对于那些正在从事 ADC 系统设计的个人而言,他们如何来完成 ADC 的评估和测试工作呢?许多人会转而使用制造厂商提供的评估板和工具套件(图 2)来进行测试。利用这些系统,我们可以很容易地通过一条USB连接线把受测 ADC 连接到计算机,然后使用软件采集数据,最后对其进行分析。图2ADC 制造厂商提供的评估板和工具套件(例如:TI ADS1281EVM-PDK 等)通常都有完整的数据采集系统,但缺少信号源。所提供软件通常执行的是类似于IEEE标准的测试。一些人想使用评估套件得到如 ADC 产品说明书规范所示的相同结果,却并非每次都能如愿,特别是使用高分辨率转换器时,因为要求的正弦波发生器可能会不可用。尽管使用评估板及其软件,常常可以得到一些有意义的结果,但也要小心谨慎。评估硬件和分析软件一般工作在一种术语称作“块模式”的模式下。在这种模式下,先收集一批固定数量的采样,将其发送给软件,然后软件对该数据块或者数据记录进行分析。我们对大多数 IEEE 标准测试进行了定义,这样它们便可以处理这些数据块。问题是,IEEE1241 中列出的测试真能帮你对系统的ADC 适用性进行评估吗?如果你相信它能,那么除了在器件产品说明书中所看到的内容,你还能得到什么呢?许多人认为,除看到实际运行的器件外,评估板还介绍参考设计和布局,可为你在实际系统中使用它提供指导。尽管如此,对于一些人而言,IEEE1241测试却并非是他们所需要的。根据不同的ADC 类型,一些人会喜欢把评估板和软件用作数字示波器或者图形记录器,持续地产生数据流,这与逐块数据传输不同。我接触过的一些客户努力想知道长期稳定性或者漂移性能,他们有时会要求连续数小时甚至几天在硬盘上记录数据。尽管更多的还是由 IEEE1057 对这些应用进行规范,但没有哪一种标准探讨长期漂移或者稳定性测试。大多数制造厂商的评估板和软件都不会支持这类应用或者测试。ADC 组件制造厂商应该启用其评估板和软件来产生数据流和数据块采集,并开启其它功能来进行 ADC 相关标准中没有规范的测试吗?对 ADC 制造厂商而言,标准绝对有关系。但作为使用这些 ADC 的电路设计人员,ADC 制造厂商使用的相同标准对你可能并没有多大用处。在进行 ADC 评估时,你会想到哪些标准呢?我会在后续文章中与读者们一起分享。参考文献《数据转换手册》中《数据转换器历史》,作者:Walt Kester,刊发于《模拟器件》(2005年Newnes出版社)《波形记录器数字化IEEE标准》,IEEE1057-1994《模数转换器术语与测试方法IEEE标准》,IEEE1241-2000《ADS1281性能开发套件 (PDK)》,刊发于2011 年 5 月TI SBAU143C


深入阅读:
模拟前端模/数转换器的三种类型
ADC模数转换器分类和选型主要指标


如何选择最佳放大器驱动SAR模数转换器

立即加入德州仪器技术社区

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭