当前位置:首页 > 模拟 > 模拟
[导读]晶体管功放由于一般不需使用输出变压器,成本较低,所以比较适合音乐爱好者自制。

晶体管功放由于一般不需使用输出变压器,成本较低,所以比较适合音乐爱好者自制。其中,纯甲类放大器不存在交越失真,音色温暖、耐听,深受发烧友的喜爱;但甲类功率放大器特点也包括静态功耗大、发热量大,对元器件制作工艺要求高,尤其对电源变压器的要求很高,否则听感甚至比不上高偏流甲乙类功放。为了尽量解决好上述问题,设计了如附图的电路,实际使用效果良好,该电路的特点是:

(1)非对称形式,可有效防止偶次谐波削弱;
(2)除大功率扩流管外,前级各电路均工作于单端甲类状态,不存在交越失真;
(3)电路简洁,元件少,便于制作PCB板,能耗、成本低;
(4)由实际试听,认真选取了各元件型号、参数,确保了可靠性,出声水平很好。

该电路主要由三部分组成:

差分输入部分

这一部分设计的特点是:以恒流源代替射极电阻,提高共模抑制比,发以光二级管为定压元件,既简化了线路,同时电压稳定性能也较好。由于C2240管子工作在单端状态,为保证有足够的动态,而不发生削顶失真,这一级的静态电流为
(1.8V-0.7V)/330Ω=1.67mA(实际测试1.8mA)

这一偏差主要由结电压估算偏差引起。应该注意到,三极管的放大倍数β,随Ib的增大而减小,会造成非线性失真,由于差分输入位于主电压放大级之前,这种不良影响将更加显著,为此该处使用东芝C2240(对管为C2240/A970),该管为音频专用小功率管,带宽100MHz,它的显著优点是:噪声低,β随Ib变化率很小,从而可以提高该级的线性。

主电压放大部分


该级的主要作用是对音频信号进行电压放大,要求放大管具有足够的带宽,选用了A970,带宽100MHz,这一级的静态电流为: (1.8V-0.7V)/100Ω =11mA(实际测试接近12mA)

BG3的射极电阻对电路动态影响较大,取为100Ω,保留一定量的局部电流负反馈。
BG4为BG3的镜像电流源,并不参与电压放大,该部分电路仍工作在甲类状态,C1、C2的设置可以防止放大器出现高频自激。

推动与大功率扩流部分

推动管选用中功率对管D669/B649(140MHz),大功率管选用了C5200/A1943(30MHz),利用C2330作为这一级的偏置,可以看到C2330的集电极与发射极之间,并没有并联提供信号交流通道的电容器,由于C2330集电极与发射极之间的电压Uce(即推动管的静态偏置电压),通过1kΩ的可调电阻调整,且可较好的保持定值,则e点的电压将以低于c点Uce的形式随c点变化,所以不必担心放大后的波形正负半周不对称,利用数字储示波器,可观察到波形对称良好。

关于东芝的C5200/A1943对管,音响文章介绍较多,不作赘述。在此谈一下该对管的静态工作点,静态工作电流定为50mA,实际调试中发现该电流在50mA~300mA间变化,对提升音质无太大的作用,当然在低于30mA时,放大器声音变得单薄,分析力下降。整机的电压放大倍数为:= 26.5(28.465dB)

电路采用电压负反馈,有文献指出电流负反馈听感优于电压负反馈的线路,其实电压负反馈功放也很有特色。本线路没有采用直流伺服技术稳定中点电位,仍保留了负反馈接地电容,从而Cf将影响到线路的音色,该电容采用了ELNA音频专用100μF电容反向串联获得。

1、电源部分

变压器容量建议在200W以上,利用快速恢复二级管FR307进行整流,实际使用中,仅利用一对10000μF滤波电容,音箱中就已经干净,增大滤波电容的容量有利于功放动态的发挥。

2、调试

本机调试方法如下,检查线路无误后,将1kΩ可调电阻调至最大值,接通电源,测量输出中点电压,该电压一般不超过1V,通过后:

(1)调节差分输入级的滑臂电阻,使中点电位接近0V;
(2)调整功率管静态偏置电源至50mA。

重复步骤(1)、(2)使机器进入正常工作状态,通电煲机半小时左右,再次调整一遍,即可通电试音。

由于该线路为非对称结构,开机时不可避免地存在一定的冲击,同时为了更有效保护喇叭,建议安装喇叭保护电路。

如果想提高电路的功率和阻尼系数,可以再加并一对大功率管C5200/A1943,在调试过程中发现,将C5200/A1943换为场效应管K413/J118时,声音也非常醇厚,不过K413/J118为工业用管,开启电压较高,由于线路无须改变,不妨一试。

关于本机的性能参数,由于没有适用的检测仪器,为不误导读者,在此不能给出。而对一款线路,最重要的还是要看线路出声是否入耳,所以在此仅给出我与几名音乐爱好者的主观评价。利用该后级,以分键伍DP-5010CD为音源,怪兽400MK Ⅱ信号线,惠威的震撼6A音箱为试音器材,测试了平衡信号、20Hz~20kHz的扫频信号,试播了蔡琴的几张专辑,可以说出声感情充沛,声音厚实,能很好的收住口型:在播放《夜深沉》曲目时,紧迫的鼓点声,鼓锤挨着鼓皮的声音,清晰可辨,极具穿透力。本后级的信噪比很高,即便耳杂贴近音箱都很难觉察到噪音,动态大、声场宽,对人声与弦乐的表现可圈可点,分析力很高。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Bourns® SRP3220A 系列符合车规级 AEC-Q200 标准,其设计特点有助于降低 EMI,进而提升汽车应用中的性能与可靠性

关键字: 电阻 功率电感 EMI

集成电路作为将多个电子元件集成在一起的芯片器件,虽然功能强大但较为脆弱。高温环境可能导致集成电路参数漂移、耐久性下降和内部缺陷暴露等不良影响。

关键字: 电容 电阻

电阻的精度影响输出电压的准确性,因此在电源芯片等应用中需要选择高精度的电阻。在某些应用中,电阻的精度至关重要。例如,在电源芯片上,它决定了输出电压的准确性。电阻的精度越高,输出电压的偏差就越小。若选用5%精度的电阻,其将...

关键字: 电阻 元器件

电阻,这个看似简单的物理概念,实际上蕴含着丰富的科学内涵。在接下来的时间里,我将向大家阐述电阻的作用,以及它在科技发展中的重要性。

关键字: 电阻 电流

精密电阻广泛应用于医疗设备、测试仪器、航空航天及汽车电子等高精度要求的工业场景,其封装形式包括圆柱形、片状及框架结构,生产工艺涉及真空溅镀、光刻等技术以保证稳定性。

关键字: 精密电阻 电阻

本文介绍了通常应用于心电图(ECG)和生物阻抗(BioZ)模拟前端(AFE)电路的传统共模/差模无源电磁干扰(EMI)滤波器的分析与设计准则。文中详细说明了不平衡的EMI滤波器如何造成共模噪声混入差模信号路径,进而降低信...

关键字: EMI滤波器 电阻 SNR

其本质是电感、电阻或芯片引脚在高频环境下表现出的等效电容特性,通常由等效串联电阻(ESR)和等效串联电感(ESL)组成。

关键字: 电感 电阻 芯片

在电子电路中,电解电容的纹波电流承受能力直接影响其使用寿命和电路稳定性。准确测试纹波电流不仅能验证电容性能是否达标,也是电路设计可靠性验证的关键环节。以下从测试原理、设备准备、操作步骤到数据解读,全面介绍电解电容纹波电流...

关键字: 电解电容 纹波电流 电路设计
关闭