当前位置:首页 > 模拟 > 模拟
[导读]近年来,随着通信和多媒体市场的快速增长,数字系统无论在处理能力还是处理速度上都取得了飞速的发展,因此对作为模拟信号通向数字信号桥梁的模数转换器(ADC)的性能要求也越来越高 [1]。在各种ADC结构中,流水线ADC在

近年来,随着通信和多媒体市场的快速增长,数字系统无论在处理能力还是处理速度上都取得了飞速的发展,因此对作为模拟信号通向数字信号桥梁的模数转换器(ADC)的性能要求也越来越高 [1]。在各种ADC结构中,流水线ADC在速度和精度上能够达到合理的折衷,因此得到了广泛应用。在流水线结构ADC中,其前端采样保持电路是整个系统的关键模块之一,其性能直接决定了整个ADC的性能[2]。

本文对流水线ADC的采样保持电路的结构以及主要模块如增益提高型运算放大器电路、共模反馈电路和开关电路进行了分析,并对各个模块进行了设计,最终设计出一个适合于13 bit 40 MHz流水线ADC的采样保持电路,仿真结果表明,该采样保持电路满足设计要求。

1 采样保持电路结构

采样保持电路的结构直接决定了采样保持电路的精度和速度,图1为常用的两种全差分结构:电荷再分布型和电容翻转型。全差分结构能够很好地消除直流偏置和偶次谐波失真,并抑制来自衬底的共模噪声。

与电荷再分布型结构相比较,电容翻转型结构的反馈系数为1,是电荷转移型(在Cs=Cf=C时,反馈系数为0.5)的两倍,因此在同样的闭环带宽时,电容翻转式结构所要求的运放单位增益带宽(GBW)只是电容电荷再分布式GBW的一半,所以电容翻转型结构具有功耗小的优点[3]。另外由于电荷再分布型电路需要使用4个电容,但电容翻转型只需要2个电容,在CMOS工艺中,电容需要大的实现面积,电容翻转型结构具有小的实现面积。因此,电容翻转型更适合高速高精度的流水线ADC应用,本文的采样保持电路采用电容翻转式结构来实现。

2 增益提高型放大器的设计

运算放大器是整个采样保持电路中最重要的模块,它的增益和带宽直接决定了采样保持电路的精度和速度。但增益和带宽是相互矛盾的,高增益要求使用多级放大器、小的偏置电流、长沟道器件;而大带宽则要求使用单级放大器、大的偏置电流、短沟道器件,所以放大器是采样保持电路设计的一个难点。

本文主运算放大器采用全差分的折叠式共源共栅结构,并用增益提高技术来提高放大器的增益,达到了高增益和大带宽的要求[4-5]。主运算放大器电路如图2 所示,由于NMOS管的迁移率高于PMOS管,在跨导相同的情况下,NMOS管具有较小的面积,从而使得运算放大器具有较小的输入电容,有利于提高采样保持电路的反馈系数,所以本文采用了NMOS管作为输入对管的折叠式共源共栅结构。两个辅助运算放大器BN和BP分别为NMOS和PMOS管作为输入对管的折叠式共源共栅放大器。图2 中的CMFB模块为主运算放大器的共模反馈电路,由于主运放的输出摆幅较大,所以采用如图3(a)所示的开关电容共模反馈电路,开关电容共模反馈不会受输出摆幅产生限制,并且其只有静态功耗。对于两个辅助运放而言,由于其输出和输入范围很小,所以采用如图3(b)所示的连续时间共模反馈电路,这种电路没有电容,节省了面积。图2(b)为主运算放大器在负载电容为6 pF时的频率特性曲线,其增益为133 dB,带宽约为478 MHz,相位余度为59.7度。整个放大器(包括偏置电路、辅助运放、共模反馈电路)消耗的平均电流为8.5 mA。

3 采样开关的设计

采样开关的性能在采样保持电路中占有十分重要的地位,对于一个简单的NMOS开关,开关导通时其导通电阻Ron为:

可见,导通Ron是一个与输入信号Vin相关的非线性电阻,这将在输出信号中引入谐波失真 [5]。本文采用如图4(a)所示的栅压自举开关,开关的导通电阻随输入信号幅值变化的曲线图如图4(b)所示,曲线的斜率大约为11 Ω/V,其导通电阻随输入信号幅值的变化较小,具有较高的线性度。

4 仿真结果

采用TSMC的0.18 μm工艺对电路进行了设计,电源电压为3.3 V,采样时钟为40 MHz,采用Spectre对电路进行了仿真。在采样保持电路的输入端加一值为1 V的阶跃信号,其瞬态仿真结果如图5所示。从图中分析得出,在保持相结束时刻,采样保持电路的输出幅值为1.000 08 V,与理想电压的误差为0.08 mV,建立精度达到了0.008%。图6所示为信号的频谱分析,输入峰-峰值为2 V,频率为1.992 187 5 MHz的正弦信号。对输出信号进行4 096点的FFT, 结果显示, 其SNDR为84.8 dB,SFDR为92 dB,有效位数为13.8 bit,能够胜任13 bit 40 MHz流水线型ADC对前端采样保持结构的要求。整个采样保持电路消耗的平均电流为8.501 mA。

本文设计了一个高速高精度的采样保持电路,可作为13 bit 40 MHz流水线型ADC的前端模块。该采样保持电路为电容翻转结构,采用栅压自举开关提高了开关的线性度,其运算为增益提高型的折叠式共源共栅结构,达到了高速高增益的要求。仿真结果表明,整个采样保持电路的精度和速度满足了设计要求。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭