当前位置:首页 > 模拟 > 模拟
[导读]与SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-Ga2O3晶体管。下面请这些研究小组的技术人员,以论

与SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐压且低损失的功率半导体元件,因而引起了极大关注。契机源于日本信息通信研究机构等的研究小组开发出的β-Ga2O3晶体管。下面请这些研究小组的技术人员,以论文形式介绍一下β-Ga2O3的特点、研发成果以及今后的发展。

我们一直在致力于利用氧化镓(Ga2O3)的功率半导体元件(以下简称功率元件)的研发。Ga2O3与作为新一代功率半导体材料推进开发的SiC和GaN相比,有望以低成本制造出高耐压且低损失的功率元件。其原因在于材料特性出色,比如带隙比SiC及GaN大,而且还可利用能够高品质且低成本制造单结晶的“溶液生长法”。

在我们瞄准的功率元件应用中,使用Ga2O3试制了“MESFET”(metal-semiconductorfieldeffecttransistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、泄漏电流小的特性。而使用SiC及GaN来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。

虽然研发尚处于初期阶段,但我们认为Ga2O3的潜力巨大。本论文将介绍Ga2O3在功率元件用途方面的使用价值、研发成果,以及今后的目标等。

比SiC及GaN更为出色的性能

Ga2O3是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前(2012年2月)已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与Ga2O3的结晶生长及物性相关的研究报告大部分都使用β结构。我们也使用β结构展开了研发。

β-Ga2O3具备名为“β-gallia”的单结晶构造。β-Ga2O3的带隙很大,达到4.8~4.9eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV及GaN的3.4eV(表1)。一般情况下,带隙大的话,击穿电场强度也会很大(图1)。β-Ga2O3的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上。


图1:击穿电场强度大

带隙越大,击穿电场强度就越大。β-Ga2O3的击穿电场强度为推测值。

β-Ga2O3在显示出出色的物性参数的同时,也有一些不如SiC及GaN的方面,这就是迁移率和导热率低,以及难以制造p型半导体。不过,我们认为这些方面对功率元件的特性不会有太大的影响。

之所以说迁移率低不会有太大问题,是因为功率元件的性能很大程度上取决于击穿电场强度。就β-Ga2O3而言,作为低损失性指标的“巴利加优值(Baliga’sfigureofmerit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴加利优值较大,是SiC的约10倍、GaN的约4倍。

一般情况下,导热率低的话,很难使功率元件在高温下工作。不过,工作温度再高也不过200~250℃,因此实际使用时不会有问题。而且封装有功率元件的模块及电源电路等使用的封装材料、布线、焊锡、密封树脂等周边构件的耐热温度最高也不过200~250℃程度。因此,功率元件的工作温度也必须要控制在这一水平之下。

另外,关于难以制造p型半导体这一点,使用β-Ga2O3来制作功率元件时,可以将其用作N型半导体,因此也不是什么问题。而且,通过掺杂Sn及Si等施主杂质,可在电子浓度为1016~1019cm-3的大范围内对N型传导特性进行控制(图2)。


图2:N型传导特性的控制范围大

使用β-Ga2O3时,可在大范围内控制N型传导性。实际上,通过掺杂施主杂质,可在1016~1019cm-3范围内调整电子密度。

导通电阻仅为SiC的1/10

β-Ga2O3由于巴利加优值较高,因此理论上来说,在制造相同耐压的单极功率元件时,元件的导通电阻比采用SiC及GaN低很多(图3)。降低导通电阻有利于减少电源电路在导通时的电力损失。


图3:导通电阻比SiC及GaN小

在相同耐压下比较时,β-Ga2O3制造的单极元件,其导通电阻理论上可降至使用SiC时的1/10、使用GaN时的1/3。图中的直线与巴加利优值的倒数相等。直线位置越接近右下方,制成的功率元件性能就越出色。

使用β-Ga2O3的功率元件不仅能够降低导通时的损失,而且还可降低开关时的损失。因为从理论上说,在耐压1kV以上的高耐压用途方面,可以使用单极元件。

比如,设有利用保护膜来减轻电场向栅极集中的“场板”的单极晶体管(MOSFET),其耐压可达到3k~4kV。

而使用Si的话在耐压为1kV时就必须使用双极元件,即便使用耐压公认较高的SiC,在耐压为4kV时也必须使用双极元件。双极元件以电子和空穴为载流子,因此与只以电子为载流子的单极元件相比,在导通及截止的开关动作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。

比如Si,在耐压1kV以上的用途方面通常是晶体管使用IGBT,二极管使用PIN二极管。

SiC的话,耐压4kV以下用途时晶体管可使用MOSFET等单极元件,二极管可使用肖特基势垒二极管(SBD)等单极元件。但在耐压4kV以上时导通电阻超过10mΩcm2,单极元件不具备实用性。因此必须使用双极元件

更多资讯请关注:21ic模拟频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

亚马逊云科技全球拓展赋能副总裁Maureen Lonergan 北京2025年4月21日 /美通社/ -- 掌握人工智能技能的人才对企业而言不再是奢侈资源,而是必需资源。然而,巨大的技能缺口成为诸多企业应用人工智能技术...

关键字: 亚马逊 人工智能 数字化 GAN

…… 德国最大的功率半导体展会于纽伦堡举行(5月6日至8日)…… 分享模拟与电源、专用CIS、SiC和GaN技术的最新进展 韩国首尔2025年4月7日 /美通社/ -- 领...

关键字: PCI TE GAN 功率半导体

北京2025年2月11日 /美通社/ -- 亚马逊云科技从一开始就将安全为本的原则融入进其服务的构建中,包括为客户设置高标准的默认安全功能。在账户安全的众多要素中,强大的身份验证是账户安全的基础组成部分。多因素验证(MF...

关键字: 亚马逊 安全管理 TI GAN

氮化镓(GAN)电源设备正在看到在一系列低至中型应用程序中的使用量增加,包括移动设备电源适配器,数据中心电源和电子示波器。通常使用侧向高电子迁移式晶体管(HEMT)。将GAN功率设备的应用范围扩展到更高的电压和功率可能需...

关键字: GAN HEMT

Changan Automobile介绍了它声称是世界上第一个基于硝酸盐(GAN)的商业镀镀金(GAN)的机载充电器(OBC)技术平台,该平台集成到新推出的Qiyuan E07电动汽车中。该国最古老的汽车制造商之一已经实...

关键字: GAN OBC

压电陶瓷换能器作为一种能够实现电能与机械能相互转换的关键元件,在超声加工、医学超声成像、水声通信等众多领域有着广泛应用。其性能的优劣与驱动电路紧密相关,而压电陶瓷换能器的阻抗特性,无论是高阻抗还是低阻抗,都对驱动电路提出...

关键字: 压电陶瓷换能器 驱动电路 元件

在电子电路中,尖峰电流是一种常见且具有潜在危害的现象。它通常在电路接通或断开的瞬间,以及负载发生突变时出现,其幅值可能远远超过正常工作电流。尖峰电流不仅会对电路中的元件造成损害,还可能引发电磁干扰,影响其他设备的正常运行...

关键字: 尖峰电流 电磁干扰 元件

亚马逊云科技培训与认证副总裁Maureen Lonergan 北京2025年1月20日 /美通社/ -- 2024年,生成式AI再度成为科技领域的焦点。各界人士纷纷热议,试图理清生成式AI对业务的影响。展望2025年,...

关键字: 生成式AI 亚马逊 数字化 GAN

在现代电子设备的设计中,电容作为电路中不可或缺的元件,扮演着储能、滤波、耦合和去耦等多种角色。从基础的消费电子到复杂的工业控制系统,电容的性能直接影响系统的稳定性和可靠性。

关键字: 电容 电路 元件

德州仪器采用当前先进的 GaN 制造技术,现启用两家工厂生产 GaN 功率半导体全系列产品 新闻亮点: 德州仪器增加了 GaN 制造投入,将两个工厂的 GaN 半导体自有制造产能提升至原来的四倍。 德州仪器...

关键字: 半导体 德州仪器 氮化镓 GAN
关闭