当前位置:首页 > 模拟 > 模拟
[导读]可编程逻辑器件的设计流程如图10-2所示,它主要包括设计准备、设计输入、设计处理和器件编程四个步骤,同时包括相应的功能仿真、时序仿真和器件测试三个设计验证过程。 1.设计准备采用有效的设计方案是PLD设计成功的

可编程逻辑器件的设计流程如图10-2所示,它主要包括设计准备、设计输入、设计处理和器件编程四个步骤,同时包括相应的功能仿真、时序仿真和器件测试三个设计验证过程。

 

 

1.设计准备

采用有效的设计方案是PLD设计成功的关键,因此在设计输入之前首先要考虑两个问题:一是选择系统方案,进行抽象的逻辑设计;二是选择合适的器件,满足设计的要求。

对于低密度PLD,一般可以进行书面逻辑设计,将电路的逻辑功能直接用逻辑方程、真值表状态图或原理图等方式进行描述,然后根据整个电路输入、输出端数以及所需要的资源(门、触发器数目)选择能满足设计要求的器件系列和型号。器件的选择除了应考虑器件的引脚数、资源外,还要考虑其速度、功耗以及结构特点。

对于高密度PLD,系统方案的选择通常采用“自顶向下”的设计方法。首先在顶层进行功能框图的划分和结构设计,然后再逐级设计低层的结构。一般,描述系统总功能的模块放在最上层,称为顶层设计;描述系统某一部分功能的模块放在下层,称为底层设计。底层模块还可以再向下分层。这种“自顶向下”和分层次的设计方法使整个系统设计变得简洁和方便,并且有利于提高设计的成功率。目前系统方案的设计工作和器件的选择都可以在计算机上完成,设计者可以采用国际标准的两种硬件描述语言-VHDL或Verilog-对系统级进行功能描述,并选用各种不同的芯片进行平衡、比较,选择最佳结果。

2.设计输入

设计者将所设计的系统或电路以开发软件要求的某种形式表示出来,并送入计算机的过程,称为设计输入。它通常有原理图输入、硬件描述语言输入及波形输入等多种方式。

原理图输入是一种最直接的输入方式,它大多数用于对系统或电路结构很熟悉的场合。但系统较大时,这种方法的相对输入效率较低。

硬件描述语言是用文本方式描述设计,它分为普通的硬件描述语言和行为描述语言。行为描述语言是指高层硬件描述语言VHDL和Verilog,它们有许多突出的优点:语言的公开可利用性、便于组织大规模系统的设计、具有很强的逻辑描述和仿真功能,而且输入效率高、在不同的设计输入库之间转换也非常方便。

普通硬件描述语言有ABEL-HDL、CUPL等,它们支持逻辑方程、真值表、状态机等逻辑表达方式。

3.设计处理

从设计输入完成以后到编程文件产生的整个编译、适配过程,通常称为设计处理或设计实现。它是器件设计中的核心环节,是由计算机自动完成的,设计者只能通过设置参数来控制其处理过程。在编译过程中,编译软件对设计输入文件进行逻辑化简、综合和优化,并适当地选用一个或多个器件自动进行适配和布局、布线,最后产生编程用的编程文件。

编程文件是可供器件编程使用的数据文件。对于阵列型PLD来说,是产生熔丝图文件(简称JED)文件,它是电子器件工程联合会制定的标准格式;对于FPGA来说,是生成位流数据文件。

4.设计校验

设计校验过程包括功能仿真和时序仿真,这两项工作是在设计输入和设计处理过程中同时进行的。功能仿真是在设计输入完成以后的逻辑功能检证,又称前仿真,它没有延时信息,对于初步功能检测非常方便。时序仿真在选择好器件并完成布局、布线之后进行,又称后仿真或定时仿真,它可以用来分析系统中各部分的时序关系以及仿真设计性能。

5.器件编程

编程是指将编程数据放到具体的PLD中去。对阵列型PLD来说,是将JED文件“下载”到PLD中去;对FPGA来说,是将位流数据文件“配置”到器件中去。

器件编程需要满足一定的条件,如编程电压、编程时序和编程算法等。普通的PLD和一次性编程的FPGA需要专用的编程器完成器件的编程工作;基于SRAM的FPGA可以由EPROM或微处理器进行配置;ISP在系统编程器件则不需要专门的编程器,只要一根下载编程电缆就可以了。

更多资讯请关注:21ic模拟频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭