当前位置:首页 > 模拟 > 模拟
[导读] 在模拟电子技术基础这门课中,运算放大器及其线性应用内容是教学中的一个重要内容,如何在教学中使学生熟练掌握这些内容是教学中必须解决的问题。运用EWB仿真辅助教学,对这些内容进行仿真分析,并将其应用到相关的

 在模拟电子技术基础这门课中,运算放大器及其线性应用内容是教学中的一个重要内容,如何在教学中使学生熟练掌握这些内容是教学中必须解决的问题。运用EWB仿真辅助教学,对这些内容进行仿真分析,并将其应用到相关的内容教学中,有助于学生对这些内容的理解与掌握。

EWB(Electronic Workbench)软件是InterActive Image Technologies Ltd在20世纪90年代初推出的电路仿真软件。目前普遍使用的是EWB5.2,相对于其它EDA软件,它是较小巧的软件(只有16 M)。但它对模数电路的混合仿真功能却十分强大,几乎100%地仿真出真实电路的结果,并且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器和电压表、电流表等仪器仪表。它的界面直观,易学易用。

1 基于EWB的运算放大器及其线性应用电路仿真教学

通过仿真可以生动具体的将电路及结论展示给学生,一方面加深了学生对理论的理解,另一方面学生通过仿真软件了解了电路的结构和使用方法。

1.1 同相比例放大电路

电压增益Av

根据虚短和虚断的概念有:

(此处设问,让学生计算出该仿真电路的电压放大倍数)

根据仿真电路图得到,计算出同相比例放大电路的理论电压放大倍数为:

仿真结论:

通过仿真,观察图2示波器:蓝色为输入信号(上面),红色为输出信号(下面),两波形的幅度读数相等,但输入信号波形每格对应的是200 mV,输出波形的每格对应的是2 V,相位相同,因此输出信号与输入信号波形电压比为10,该结论与理论值相符合。

1.2 电压跟随器

特性分析:

根据虚拟短路和根据虚拟断路:vo=vn≈vp=vi

仿真结论:

通过仿真,观察图4示波器:两波形的幅度读数相等,相位相同,因此输出信号与输入信号波形电压比为1,该结论与理论值相符合。

1.3 反相比例放大电路

电压增益AV

提问:“-”是什么意思? (可作为公式直接使用)

根据仿真电路图得到,反相比例放大器,理论电压放大倍数为-1(此处设问,让学生计算出该仿真电路的电压放大倍数)

仿真结论:

通过仿真,观察图6示波器:水平轴上面为输入信号波形,水平轴下面为输出信号,两波形的幅度读数相等,但输入信号波形每格对应的是2 V,输出波形的每格对应的是2 V,但相位是相反的,因此输出信号与输入信号电压比为-1,该结论与理论值相符合。

1. 4 运算放大器应用实例解答及其仿真辅助教学

例图7直流毫伏表电路,当R2>>R3时,

1)试证明Vs=(R3R1/R2)Im;

2)R1=R2=150 kW,R3=1 kW,输入信号电压

Vs=100 mV时,通过毫伏表的最大电流Im(max)=?

解:(1)根据虚断有Ii=0

所以I2=Is=Vs/R1

又根据虚短有Vp=Vn=0

R2和R3相当于并联,

所以-I2R2=R3(I2-Im)

所以,当R2>>R3时,Vs=(R3R1/R2)Im

(2)代入数据计算即可得Im=100μA。

仿真结论:

通过仿真,观察虚拟示波器图9可以读出输入信号为100.00 mV,输出信号为-100.665μV,由于示波器不能直接测电流,因此只有通过将电流转换为电压来测量,所以仿真电路中用了一个电流控制电压源,控制系数为1 Ω,因此,将示波器读出来的电压-100.665μV,转换为电流就是-100.665μA,符号表示电流的方向从负载流出,同电路图中标示的方向是一致的,误差为0.665μA,这个误差非常小,在工程上完全可以忽略。

2 结束语

综上所述,通过EWB对运算放大器及其线性应用电路的仿真教学,可以将比较枯燥的理论讲解和仿真实验巧妙的结合起来,充分利用仿真技术对相应的电路进行仿真,可以使一些结论等内容得到验证,从而加深学生对理论的理解,提高了学生学习积极性、兴趣爱好及提高课堂效率;另外生动的仿真也加深了学生对理论的理解记忆,从而实现了理论与实际的结合,并且在还可以充分利用仿真这个虚拟实验平台,学生只需要掌握这些仿真软件使用方法,就可解决学校办学设备不足,可以克服实验室试验箱只能做固定的一些实验的缺点,学生可以自主的任意设置实验内容,从而大大丰富拓展了实验教学的内容与手段,有利于培养学生综合和设计性实验的能力及提高学生创新实践能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

纳祥科技推出太阳能+Type-C双充电自行车前灯方案,方案核心模块包含太阳能板、单片机、三极管、3颗LED灯珠与1200mAh电池,通过低功耗单片机与三极管驱动,支持强光/弱光/爆闪3种模式,高流明远射程,适配多种车型

关键字: 方案开发 电子方案 自行车前灯方案 纳祥科技

方案解析:通过从电视HDMI ARC接口解析出光纤、同轴、I2S、左右声道4种信号,任选其一桥接到蓝牙、WIFI、U段音频发射,再发射到接收端(如耳机、音箱),为无线音频发射提供ARC回传数字音频桥接

关键字: 方案开发 电子方案 纳祥科技

红外摸高计数器方案,集成了单片机、语音芯片、数码管、喇叭、充电芯片与锂电池,通过红外感应检测动作自动计数,支持摸高与计数2种模式

关键字: 方案开发 电子方案 摸高计数器方案 纳祥科技

高精度迷你照度计方案是由纳祥科技基于客户需求定制开发,方案由单片机、高精度光照传感器、驱动芯片、LED屏、纽扣电池等核心部件组成,实现了 “开机即测,数据随行” 的实用价值

关键字: 方案开发 电子方案 照度计方案 纳祥科技

电源纹波是指电源输出电压中的交流成分,通常是由于开关电源的开关动作和滤波元件的限制而产生的周期性波动。

关键字: 电源纹波

一旦电路发生过电流现象时,OTP系列就会在规定的时间内熔断开路,防止故障并保护元器件免遭损坏。

关键字: OTP

模拟数字转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。

关键字: A/D转换器

LLC谐振变换器利用谐振原理实现零电压开关(ZVS)和零电流开关(ZCS),从而在开关过程中减少电压和电流的交叠,降低了导通和关断损耗‌12。

关键字: LLC谐振变换器

LED是一种能发光的半导体电子元件,这种电子元件早期只能发出低光度的红光,随着技术的不断进步,现在已发展到能发出可见光、红外线及紫外线的程度,光度也有了很大的提高。

关键字: LED

电器中的导线与噪音类型电器设备的电源线、电话等的通信线,以及与其他设备或外围设备进行交互的通讯线路,通常包含至少两根导线。

关键字: 电器设备
关闭