当前位置:首页 > 模拟 > 模拟
[导读]48V-12V双电池电源系统正广泛用于轻度混合动力电动车。车辆的动态运行条件可能需要在两个电池轨道之间来回传送高达10kW的电功率。由于行使中的车辆其运行操作情况多种多样,实时控制一个方向或另一个方向上的功率流需求是一个相当复杂的任务,要求其数字控制方案具有智能性。因此,当领先的汽车制造商和一级供应商开始开发48V-12V双向电源转换器时,大多数都采用了全数字方法。

 48V-12V双电池电源系统正广泛用于轻度混合动力电动车。车辆的动态运行条件可能需要在两个电池轨道之间来回传送高达10kW的电功率。由于行使中的车辆其运行操作情况多种多样,实时控制一个方向或另一个方向上的功率流需求是一个相当复杂的任务,要求其数字控制方案具有智能性。因此,当领先的汽车制造商和一级供应商开始开发48V-12V双向电源转换器时,大多数都采用了全数字方法。

全数字解决方案成本昂贵,因为它们需要许多离散的模拟电路。这些模拟电路包括精密电流检测放大器、功率MOSFET栅极驱动器、监视和保护电路等。由于电路板上的设备数量庞大,离散解决方案显得笨重且不够可靠。为了减小解决方案尺寸和降低成本,同时提高性能和系统级可靠性,部分一级供应商正在寻找一种混合架构,其微控制器处理更高级别的智能管理,而高度集成的模拟控制器实现电源转换器级。这篇博文将讨论如何确定这种模拟控制器最合适的控制方案。

表1总结了不同控制方案的优点和缺点。

A48V-12V双向转换器通常必须具有高精度的电流调节(优于3%),以便精确地控制从一个电池轨到另一个电池轨传输的功率量。由于高功率,系统通常需要交错并行操作中的多相电路,以共享总负载,并且共享应当在各个相之间均衡。因此,电压控制模式不适合,因为其不能实现多相共享。

基于电感电流峰值生成脉冲宽度调制(PWM)信号的峰值电流模式控制方案可实现多相共享。然而,共享平衡很大程度上受功率电感器公差的影响。功率电感器通常具有±10%的公差,并导致显著的共享误差,从而导致不同相位的失衡功率耗散。更糟的是,电感的峰值电流具有与DC电流的固有误差,导致电流调节较不精确,进而导致功率输送不太准确。

传统的平均电流模式控制方案解决了峰值电流模式控制的电流误差问题,因为它调节了平均电感电流,并消除了电感公差对电流调节的影响。然而,电厂传递函数随着工作电压和电流条件而变化,并且双向操作需要两种不同的环路补偿。

为了克服常规平均电流模式控制方案的挑战并简化实际电路实现,TI为48V-12V双向转换器工作开发了创新的平均电流模式控制方案,如图1和表1所示。功率级包括:

高侧FET(Q1)。

低侧FET(Q2)。

功率电感器(Lm)。

电流检测电阻(Rcs)。

两个电池,一个在HV端口,另一个在LV端口。

控制电路包括:

增益为50的电流检测放大器,通过方向指令DIR(“0”或“1”)进行方向转向。

跨导放大器用作电流环路误差放大器,在非反相引脚施加参考信号(ISET),以设置相位直流电流调节值。

PWM比较器。

与HV-Port电压成比例的斜坡信号。

由DIR控制的转向电路,用于施加PWM信号以控制Q1或Q2作为主开关。

COMP节点处的环路补偿网络。

Rcs感应电感电流,且信号被放大50倍。该信号被发送到跨导放大器的反相输入,导致COMP节点处的误差信号,该节点也是PWM比较器的非反相输入的节点。比较误差信号和斜坡信号产生PWM信号。由DIR命令控制,PWM信号可控制Q1进行降压模式操作,并强制电流从HV端口流向LV端口,或当发送到Q2时,反转电流流动的方向。

图1:TI专用平均电流模式控制方案的双向电流转换器

表2:变流器功率装置传递函数(KFF是斜坡发生器系数;Vramp = KFF×VHV-端口;Rs是沿着功率流路径的有效总电阻,不包括Rcs)

表2所示为新控制方案的优点。电厂传递函数对于双向操作是相同的,它是一阶系统。此外,传递函数与诸如端口电压和负载电流水平的操作条件无关。因此,应用单个II型补偿网络将在所有工作条件下始终稳定双向转换器,大大简化了实际电路的运用,并提高了性能。

TI的专有平均电流模式控制方案适用于汽车48V-12V双向电流控制器。它需要单个II型补偿网络来覆盖双向操作,而不需要考虑运行条件如何。电流调节精度——尽管存在电感公差,均匀共享高功率的多相并联操作等,—— 将大大简化高性能的双向转换器设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭