当前位置:首页 > 汽车电子 > 汽车电子
[导读]制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频

制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。

  目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。

  1 制动模式

  电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。

  1.1 急刹车

  急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。

  1.2 中轻度刹车

  中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。

  1.3 汽车长下坡时的刹车

  汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。

  由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。

  2 制动能量回收的约束条件

  实用的能量回收系统应满足以下要求:

  (1)满足刹车的安全要求,符合驾驶员的刹车习惯。

  刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。

  (2)考虑驱动电机的发电工作特性和输出能力。

  电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。

  (3)确保电池组在充电过程中的安全,防止过充。

  电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。

  由以上分析可得能量回收的约束条件:

  (1)根据电池放电深度的不同,电池可接受的最大充电电流。

  (2)电池可接受的最大充电时间。

  (3)能量回收停止时电机的转速及与此相对应的充电电流值。

  本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。3 制动能量回收控制算法

 

  3.1制动过程分析

  经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。

  特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程中,其发电效率K2随转速和转矩的变化而变化。制动距离S取决于制动力的大小和制动时间的长短。

  由以上分析可知,如果电池状态(包括放电深度、初始充电电流强度)允许,回收能量只与发电机发电效率和刹车距离有关。在满足制动时间要求的前提下,通过调节电机制动转矩可以控制电机转速。

  3.2 控制算法

  控制策略可描述为:在满足刹车要求的情况下(由中轻度刹车档位决定),根据能量回收约束条件(1)和(3)的不同值,确定最优制动力,使回收的能量达到最大,即电流对时间的积分达到最大。为了与平常的刹车习惯相符合,令制动力随刹车时间呈线性增长,即Fj=Fo+Kt。问题转换为寻找最优的制动力初值Fo和制动力增长系数K。

  我国常用的轿车循环25工况[1]规定,汽车最高速度不超过60km/h,加速度变化范围为-1.5m/s2~1.5m/s2。为了体现城市工况下汽车制动的典型性,同时保证安全性和平稳性,考察如下制动过程:电制动初始速度为60km/h(对应电机转速为4500r/min),电制动结束速度为5.4km/h(对应电机转速为500r/min),要求加速度的绝对值小于2m/s2,速度曲线尽量平滑。中度档位刹车时规定制动时间为8s~12s,轻度档位刹车时规定制动时间为12s~18s。下面只讨论中度档位刹车情况,轻度档位刹车情况与之类似。

  镍氢电池(100Ah)在常温以0.5C放电时,电池单体电压变化范围为12~15V,但电池主要工作于平台段,即12.2~13V。为讨论问题方便,认为电池单体端电压为12.5V,总电压等于300V。据此假设,计算所得的充电电流误差不超过6%。

  电机在不同的转速与转矩运行时,实测的效率曲线类似指数函数。为了处理方便,可将效率曲线分三段线性拟合成如下函数(拟合误差不超过5%,其中n为电机瞬时转速):

  

 

  与此相对应,可将制动过程分成三个阶段:

  第一阶段:电机转速变化范围为4500r/min~3600r/min,电机发电效率为0.9,要求制动时间t1≤3s。

  取制动转矩为60Nm,即F0=1860N,K=20,可得t1=2.62s,平均加速度约为-1.29m/s2。计算可知,充电电流I单调减小,IMax=It=0=75.75A。

  第二阶段:电机转速变化范围为3600r/min~1500r/min,电机的发电效率变化范围为0.9~0.82,要求制动时间t2≤5s。

  此时问题归结为在约束条件下的最优控制问题。经仿真计算可知,回收能量值随F0、K的增加而单调增加,并且主要由F0决定。当F0较小时,K的变化对制动时间的影响较大。由于电机可运行在三倍过载(140Nm)的情况下,可得最大制动力为4300N。当F0=4300N、K=30时,回收能量取最大值,为274.3(单位:安秒/As),平均加速度为-2.83m/s2。为了满足刹车平稳性的要求,取F0=2300N、K=50。制动时间为4.71s,此时回收能量为262.8As,较最大值减少4.2%,而平均加速度为-1.68m/s2,仅为最大值的59.3%。此阶段充电电流最大值为76.9A。为了准确描述能量回收的效果,引入了一个新的单位“安秒/As”(即时间以秒为单位对电流的积分)来衡量能量的大小。

  第三阶段:电机转速变化范围为1500r/min~500r/min,电机的发电效率变化范围为0.82~0.6,要求制动时间t3≤2s。

  仿照第二阶段的分析方法可得,取F0=3000N、K=30时,制动时间为1.88s,回收能量为42.1As,平均加速度为-2.01m/s2。此时回收能量较最大值减少2.3%,而平均加速度为最大值的74.1%,此阶段充电电流最大值为35.9A。

  4 仿真模型及结果

  根据汽车动力学理论[2]并结合其它相关方程可得仿真模型:

  驱动力合力:Ft=Ff+Fj+Fi+Fw

  其中,Ft为作用于车轮上的驱动力合力,Ff为滚动摩擦力,Fj为加速阻力,Fi为坡度阻力,Fw为空气阻力。在城市工况下,Fi和Fw可忽略。

  

 

  其中,车体质量为M,瞬时车速为V,制动初始车速为V0,电制动结束时车速为V1,充电电流为I,电池端电压为U。其它符号含义与前相同。

  在Simulink环境下建立仿真模型,可得电机转速曲线如图1所示,充电电流曲线如图2所示,回收能量曲线如图3所示。

  

 

  

 

  

5 制动能量回收控制算法功效的评价

 

  以初始速度为60km/h的电制动典型过程为例,经仿真计算可得,回收能量占车体总动能的65.4%,其余的34.6%为机械刹车和电刹车过程中的损耗。以我国轿车25循环工况为例,考虑到摩擦阻力及各部分效率的问题,回收能量占总耗能的23.3%。

  实验证明,本文提出的制动能量回收控制策略是简洁有效的。在典型城市工况下,配备能量回收系统的XL型纯电动轿车运行可靠,可以延长续驶里程10%以上。

  6 其它相关问题的讨论

  锂电池由于比能量高,也是EV常用的动力源。实验证明国内研制的锂电池瞬时(20s)充电电流上限可达1C,对常用的80Ah锂电池而言,其最大充电电流为80A左右。但是出于安全方面的考虑,如果把制动能量回收系统用于锂电池系统,需要严格的限流措施或将电刹车与机械刹车同时作用。

  制动能量回收的另一种情况是汽车下长缓坡。我国规定城市道路坡度不超过8%,在此条件下,如果EV下坡速度为30km/h(n=2200r/min,效率=0.847),则制动充电电流为37.6A,对镍氢电池来说不到0.4C,可以安全地持续充电。

  尽管本课题针对纯电动车,但由于混合动力车与纯电动车的能量回收规律相似,因此以上讨论同样适用于各种混合动力车,主要区别在于电池放电倍率大小不同。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

这次北京车展国际化程度明显提高,韩国、日本、泰国、印度、中东、欧洲许多媒体代表飞赴北京,现在他们已经回到国内,对车展进行总结回顾,让我们听听他们都说了些什么。

关键字: 北京车展 中国汽车 电动汽车

5月14日消息,今日,美国白宫发布公告,拜登宣布对中国钢铁和铝、半导体、电动汽车、电池、关键矿物、太阳能电池、船舶、起重机、医疗用品等提高关税。

关键字: 电动汽车

5月9日,日本半导体制造设备商Screen Holdings公布了2023财年(2023年4月-2024年3月)财报,营收、获利均创下新纪录,预计2024年度业绩有望继续创下新高。

关键字: 半导体 传感器 人工智能 电动汽车

5月11日消息,据国外媒体报道称,美国拟向中国电动车加征关税。

关键字: 电动汽车

5月10日消息,对于国产半导体厂商来说,未来很长时间想要生产7nm及其以下的芯片依然是困难的。

关键字: 半导体 传感器 人工智能 电动汽车

Clever.AI 将助力品牌将转化率提升 66%,运营效率提升 35% 旧金山和印度孟买2024年5月6日 /美通社/ -- 领先的一体化客户参与和留存平台之一 Clev...

关键字: EV 人工智能 智能驱动 AI

由于东南亚、中东汽车市场继续膨胀,今年中国出口的汽车仍将保持增长。美国敌视中国汽车,欧洲保护主义盛行,比亚迪、吉利等品牌的全球化扩张将会受到阻挠,但增长的趋势不会改变。

关键字: 中国汽车 电动汽车 新能源汽车

继4月中旬宣布启动裁员以来,特斯拉再一次加大了“优化”力度。

关键字: 特斯拉 电动汽车

【2024年5月6日,德国慕尼黑和中国上海讯】作为全球功率系统和物联网领域的半导体领导者,英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)宣布将为小米汽车最新发布的SU7智能电动汽车供应碳化硅(SiC...

关键字: 电动汽车 碳化硅

5城巡回研讨会, 安森美全面解读碳化硅方案在汽车和工业领域的10+趋势性纵深应用

关键字: 碳化硅 栅极驱动器 电动汽车
关闭
关闭