当前位置:首页 > 汽车电子 > 汽车电子
[导读]引言:随着汽车电子控制单元功能的增加及升级换代的需要,诊断功能已经成为ECU不可或缺的重要组成部分,因此,深入研究诊断协议及其实现非常必要。基于K线的ISO14230和基于CAN总线的ISO15765是业内广泛采用的两种诊断

引言:

随着汽车电子控制单元功能的增加及升级换代的需要,诊断功能已经成为ECU不可或缺的重要组成部分,因此,深入研究诊断协议及其实现非常必要。基于K线的ISO14230和基于CAN总线的ISO15765是业内广泛采用的两种诊断标准【1】,K线是ISO9141定义的诊断通信总线,ISO14230在ISO9141的基础上将K线电压扩展到24V,并扩展了诊断服务。

相比较于CAN总线,K线诊断既能满足要求,又能节约成本,在国产车上得到大规模应用。不同于CAN总线有专门的协议驱动器,用户直接进行应用程序的编写而不用管理底层的通信,K线没有专门的协议驱动器,一般要在SCI模块的基础上用软件实现其底层通信管理,笔者为某国产车设计了一款带K线诊断功能的车身控制模块,结合ISO14230规范,首先分析K线诊断协议驱动器的功能,然后介绍协议驱动器的关键设计技术,最后用CANoe进行测试。

1 协议驱动器功能

ISO14230-1定义了K线物理层协议,ISO14230-2定义了数据链路层协议,ISO14230-3定义了应用层协议【2】,其与OSI模型对应关系如表1所示。

 

 

表1 ISO14230与OSI模型的对应关系

物理层定义了逻辑位与物理电平的对应关系,同时定义了信号位的上升时间和下降时间,数据链路层协议定义了K线数据格式、诊断报文格式、定时参数及通信错误判定及处理机制,应用层协议定义了基于请求/响应的诊断过程及各项诊断服务。做为待诊断ECU节点,K线协议驱动器实现的主要功能包括:

1、诊断报文的封装和发送、接收和解析,根据报文格式填充/提取SID和数据;

2、通过初始化过程建立与诊断仪之间的诊断通信;

3、根据诊断仪的诊断请求和ECU当前状态返回相应的诊断响应,管理诊断会话;

4、保持正确的帧间定时、字节间定时,检测诊断仪报文的定时错误及其它通信错误;

下面结合数据链路层的协议分析及其数据结构、驱动程序的设计介绍下K线诊断协议驱动器的原理及实现。

2 协议驱动器设计

K线基于异步串行通信接口,在底层传输上采用8N1格式的SCI串行数据链路格式:8个数据位+1个停止位、无奇偶校验,由于K线在物理层上是单根线,在发送时也会触发接收中断,所以K线报文的发送和接收解析统一在SCI接收中断处理函数中以状态机的形式实现【3】。下面从报文收发及解析、初始化、定时管理三个方面介绍下数据链路层的实现。

2.1 报文收发及解析

 

 

表2 K线诊断报文结构

K线报文由报文头、数据字段及校验和组成。报文头包含格式字节Fmt、目标地址Tgt、源地址Src和可选附加长度信息Len,Fmt指定目标地址的形式(物理地址/功能地址),当报文头中不包含可选Len字段时指定数据字段的长度;数据字段包括服务标识符Sid和数据Data,其长度由Fmt和Len决定;CS为单字节校验和。设计报文结构体如下:

typedef struct

{

k_state state;

uchar fmt;

uchar tgt_addr;

uchar src_addr;

uchar datalen;

uchar sid;

uchar *data;

uchar checksum;

uchar msgdatalen;

uchar done;

}k_msg;

typedef enum{

k_FMT=0,

k_TGTADDR,

k_SRCADDR,

k_DATALEN,

k_SID,

k_DATA,

k_CS

}k_state;

成员变量state表示当前K线通信数据是报文中的哪个组成部分,msgdatalen用于数据字段字节数的统计,done表示该报文是否发送或接收完成,其它成员变量与报文结构组成部分一一对应。

void k_ifc_rx(void)

{

k_u8 ch,SciSr1;

SciSr1=Kline_periph[SCISR1];

ch=Kline_periph[SCIDRL];

TimerStop(k_TP4);

switch(k_curmsg.state){

case k_FMT:

if(k_REP==k_drvhandle.mode){

if(ch==k_curmsg.fmt){

k_curmsg.state=k_TGTADDR;

k_SendChar(k_curmsg.tgt_addr);

}

}else{

k_curmsg.state=k_TGTADDR;

k_curmsg.fmt=ch;

}

break;

case k_TGTADDR:

...

break;

case k_SRCADDR:

...

break;

case k_DATALEN:

if(k_REP==k_drvhandle.mode){

if(ch==k_curmsg.datalen){

k_curmsg.msgdatalen=0;

k_curmsg.state=k_SID;

k_SendChar(k_curmsg.sid);

}

}else{

k_curmsg.msgdatalen=0;

k_curmsg.datalen=ch;

free(k_curmsg.data);

k_curmsg.data=malloc(k_curmsg.datalen);

k_curmsg.state=k_SID;

}

break;

case k_SID:

if(k_REP==k_drvhandle.mode){

if(ch==k_curmsg.sid){

k_curmsg.msgdatalen++;

if(k_curmsg.msgdatalen==k_curmsg.datalen){

k_curmsg.state=k_CS;

k_SendChar(k_curmsg.checksu);

}else{

k_curmsg.state=k_DATA;

k_SendChar(k_curmsg.data[0]);

}

}

}else{

k_curmsg.sid=ch;

k_curmsg.msgdatalen++;

if(k_curmsg.datalen==k_curmsg.msgdatalen){

k_curmsg.state=k_CS;

}else{

k_curmsg.state=k_DATA;

}

}

break;

case k_DATA:

...

break;

case k_CS:

k_curmsg.state=k_FMT;

if(k_REP==k_drvhandle.mode){

if(ch==k_curmsg.checksum){

k_curmsg.done=1;

}

}else{

k_curmsg.checksum=ch;

k_curmsg.done=1;

}

break;

} if((k_REQ==k_drvhandle.mode)&&(k_FMT!=k_curmsg.state)){

TimerStart(k_REP_P4MS,k_TP4,0,1);

}

}

2.2 初始化

在开始诊断服务之前,诊断仪必须对ECU进行初始化,通过ECU的响应获取ECU支持的报文头格式和定时参数,建立诊断通讯【4】。初始化过程如图1所示,诊断仪发送一个25ms ’0’、25ms’1’的WuP(WakeUp Pattern),然后发送STC(StartCommunication) Request,ECU检测出WuP并接收到正确的STC Request后返回STC Response,该报文的Data字段为由两个字节构成的“关键字(Key Word)”,指定了ECU所支持的报文头和定时参数信息,如Key Word指定为0x8fea即表示在报文头中采用附加长度信息Len表示数据字段长度,同时采用默认的定时参数。

 

 

图1 初始化过程

初始化之前K线处于空闲状态,ECU禁止SCI功能并使能SCI的RXD引脚为IO模式,检测到下降沿时通过定时器统计RXD引脚的IO低电平的持续时间,检测到上升沿时开始统计RXD引脚的IO高电平持续时间,判断是否为有效的WuP;也可以设置SCI的波特率为200bps,判断是否能接收到数据0xf0(0xf0在总线上表现为5个0,5个1),检测出正确的WuP后,使能SCI功能,设置波特率为10400bps,等待诊断仪发送的STC Request,接收到请求后返回STC Response肯定响应,建立诊断通讯。

2.3 定时管理

ISO14230定义了4个定时参数管理字节间定时和报文间定时,诊断仪和ECU需要共同遵守这些定时约束以保证正常的诊断通讯,表2给出了这4个定时参数的含义及取值区间。

参数变量描述最小值(ms)最大值(ms)

P1ECU响应的字节间时间间隔020

P2诊断仪请求和ECU响应之间的时间间隔,或两个ECU响应之间的时间间隔2550

P3ECU响应和诊断仪请求之间的时间间隔555000

P4诊断仪请求的字节间时间间隔020

表2 定时参数

P1和P4是报文内字节间定时,P2和P3为报文间定时。诊断仪在初始化完成后或接收到诊断响应后需要在P3时间内发送诊断请求,否则ECU端退出诊断会话,断开诊断通讯,K线协议驱动器重启,等待诊断仪发出下一个WuP和STC Request。ECU在接收到诊断请求后,需要在P2时间内返回诊断响应, P2由ECU控制,通常采用25ms的固定值,当诊断请求报文中的Fmt字段指定目标地址为“功能地址”时,P2的取值需要用一个随机数发生器来产生,因为对于功能寻址的诊断仪请求来说,可能多个ECU都会返回响应,如果采用固定的P2参数的话,可能会因为多个ECU竞争总线而出现总线冲突问题,P2采用随机数,ECU不会在同一时间返回响应,从而避免了总线竞争问题。

3 协议驱动器测试

协议驱动器在Vector公司的CANoe软硬件平台上进行测试,进行基于K线的KWP2000服务测试时,将KWP2000.dll和KLineCPL.dll模块加入CANoe仿真环境,CANoe模拟诊断仪节点,并使用一个代理节点来实现CAN网络和K线之间的报文转发,此时CANoe使用计算机的串口,并通过串口/K线转换器与ECU相连,诊断实现框架如图2所示。

 

 

图2 K线诊断框架

与CAN总线诊断不同的是,K线诊断需要诊断仪通过初始化过程和ECU建立诊断通讯,诊断通讯的建立如图3所示。建立诊断通讯后便可以像CAN诊断一样进行诊断服务了,这方面论文很多,在此不再赘述。

图3 建立诊断通讯

结语

本文实现的K线协议驱动器模块经过严格测试, 能够高效完成K线诊断,性能和稳定性达到预期设计要求。驱动器独立于处理器和操作系统,具有良好的通用性和灵活性,可以方便得集成到应用程序中,具有很高的实用价值和借鉴意义。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将对直线电机的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 电机 直线电机 驱动器

现代汽车力求提供和家里一样的舒适性和娱乐功能,因此,行业对电子控制单元(ECU)的需求呈现爆发式增长。然而,传统的总线技术和电气/电子(E/E)架构已经难以满足这种需求。本文探讨以太网技术如何革新汽车空间,塑造完全互联的...

关键字: 以太网 ECU 微控制器

在全球倡导节能减排与可持续发展的大背景下,混合动力和电动汽车(HEV 和 EV)凭借其高效、低排放的优势,逐渐成为汽车行业发展的主流方向。然而,要进一步提升这类车辆的性能,关键在于优化其电力系统,其中栅极驱动器 IC 发...

关键字: 混合动力 电动汽车 驱动器

在汽车电子系统不断发展的当下,采用智能手段控制车内外照明愈发关键。同时,紧凑的车身控制模块集成的功能持续增多,这一趋势也带来了诸多技术挑战。其中,汽车照明系统对电子元器件的要求日益严苛,而智能复用器在解决 PWM 通道、...

关键字: 电子系统 复用器 驱动器

2025年7月15日 – 致力于快速引入新产品与新技术的业界知名代理商贸泽电子 (Mouser Electronics),首要任务是提供来自1,200多家知名厂商的新产品与技术,帮助客户设计出先进产品,并加快产品上市速度...

关键字: 驱动器 AI摄像头 微控制器

上海 2025年7月4日 /美通社/ -- 本文阐述了汽车电子架构从分布式向集中化演进的趋势,黑芝麻智能分析了集中化带来的安全隔离、实时性等关键挑战,并指出车用虚拟化技术是实现域控融合的核心解决方案。该技术能...

关键字: 虚拟化技术 ECU 电子电气 IO

在汽车行业蓬勃发展的当下,汽车电子控制单元(ECU)如同车辆的“神经中枢”,掌控着发动机、制动系统、安全气囊等众多关键部件的运行。而汽车ECU功能安全开发,则是保障车辆行驶安全、避免因电子系统故障引发严重事故的核心环节。...

关键字: ECU AUTOSAR OS

【2025年5月20日, 中国上海讯】在全国两会聚焦新能源汽车充换电基础设施升级、力推超充网络扩建、高速充电走廊建设及换电模式普及的背景下,充换电行业正迎来高质量发展的关键期。近日,英飞凌科技宣布与深圳优优绿能股份有限公...

关键字: 驱动器 半导体 碳化硅

在全球积极寻求可持续能源解决方案的今天,可再生能源的发展已成为应对能源危机和环境挑战的关键。太阳能作为一种清洁、丰富且取之不尽的可再生能源,正逐渐在能源领域占据重要地位。而在太阳能系统中,光伏(PV)逆变器无疑是核心组件...

关键字: 可再生能源 逆变器 驱动器
关闭