当前位置:首页 > 汽车电子 > 汽车电子
[导读] 近年来,我国汽车工业发展迅速。随着电动汽车以及自动驾驶技术的推广,汽车中电气电子设备进一步高度集成,产品功能日趋复杂,需要在有限的空间中放置更多的电气电子产品,所以电子产品间的电磁环境变得更加恶劣,对汽车中电子产品的电磁兼容提出了更严苛的要求。比较突出的电磁兼容(Electromagnetic Compatibility, EMC)问题甚至会引起汽车的各种故障,如指示灯误操作,安全气囊不能及时弹出等。

 近年来,我国汽车工业发展迅速。随着电动汽车以及自动驾驶技术的推广,汽车中电气电子设备进一步高度集成,产品功能日趋复杂,需要在有限的空间中放置更多的电气电子产品,所以电子产品间的电磁环境变得更加恶劣,对汽车中电子产品的电磁兼容提出了更严苛的要求。比较突出的电磁兼容(Electromagnetic Compatibility, EMC)问题甚至会引起汽车的各种故障,如指示灯误操作,安全气囊不能及时弹出等。

2018年5月23日,在因特尔所属自动驾驶技术公司Mobileye所在地的新闻发布会上,一辆自动驾驶汽车径直闯过了红灯,并没有任何刹车的迹象,其原因是电视台工作人员在车内安装的摄像头的无线信号传送器发出电磁干扰,对交通信号灯内转调器的正常工作造成影响。虽然没有造成人员伤亡,但这次事故暴露出了电磁兼容问题的严重性。如何有效地解决汽车中设备级电磁兼容问题,是当前研究工作的重中之重。

对于电磁兼容问题,文献[7]主要通过滤波和屏蔽,在传播路径上抑制电磁辐射;文献[8]主要对印制电路板(Printed Circuit Board, PCB)上的线路进行合理布局,通过减小电流环路面积来减少电磁辐射。在现代电气电子设备中,信号频率的不断增加和开关管高速动作都会导致严重的电磁干扰。

与此同时,由于电流的趋肤效应导致在印制板铺铜边缘电流密度过大,引起局部近电场强度过大,如此一来,势必会引起远场辐射能力的增强,使其他敏感元器件受到强烈的电磁干扰,因此减少局部电场强度是电磁兼容中重要的一项。

信号完整性(Signal Integrity, SI)是指电路信号能够在不影响系统其他信号质量的前提下,通过一段传输路径后到达接收端口时波形的完整程度。当电路上的信号可以按要求的时序、持续时间和电压幅值从发射端到达接收端,就说明本电路具有良好的信号完整性。

电路的信号完整性受多种因素共同影响,一般是由于信号的边沿过于陡峭、阻抗不匹配以及临近线路对它的电磁干扰。如果在进行信号完整性分析时对电路板上的每一个信号网路进行分析,势必会产生大量人力和资源的消耗,可行性较低,所以在实际的信号完整性分析时,通常会将系统中的信号进行划分,计算信号网络中的关键信号,以达到节省计算时间和资源的目的。

对于信号完整性的分析,文献[14]采用S参数分析信号线路在不同频率下阻抗的变化方法,而眼图是一种在固定工作频率下分析信号质量的方法。相比而言,眼图可以直观反映出信号网络在工作频率中的系统噪声、时间抖动和过冲等现象。

汽车发动机冷却系统,一般通过散热器风扇提高水箱周围风速的办法,提高散热器的冷却效率。散热风扇的发展历经了三个阶段:①发动机直接带动风扇转动,这种方式效率低下,且会增加油耗;②电磁离合器控制风扇转速,一般有两档或三挡,但由于发动机的温度跟驾驶环境和驾驶习惯有很大关系,离合器需要频繁换挡、容易损坏,且效率的提高和油耗的减少并不十分明显;③电子风扇阶段,由车辆电子控制单元(Electronic Control Unit, ECU)控制风扇转速,可根据水箱温度实现无极调速、效率高、能耗低、寿命长。

本文通过对汽车电子风扇电机控制电路与主电路的电磁兼容进行分析和优化,提高了该电路在复杂电磁环境中的抗干扰能力并降低了该电路对外的辐射发射。

 

图1 汽车冷却装置原理

 

本文对部分主电路分三种情况单独建立了有限元模型,计算得到了表面电场强度,分析了电场分布趋势,并通过实验验证了仿真的正确性。计算结果证明,MOS管通断瞬间会有很高的高频分量, 90°直角的出现导致信号在直角处的辐射最强,对周围电路造成严重电磁干扰,建议在大功率电路中,即使工作频率较低,也应该避免出现90°直角。信号完整性分析表明,通过调整电路参数,可以明显改善驱动信号的眼图。相比传统的经验式定性分析方法,数值仿真技术可以给出更加准确的电子电路改进措施,进而提升PCB的可靠性减少故障率。

用户对汽车安全、节能、环保、舒适等方面的需求也不断提高,因此车载电气电子设备得到了广泛的应用。相关统计表明,国内紧凑型轿车的电子零部件成本约占整车的25%,豪华品牌轿车的比例则高达40%,而且这些电子产品的种类和数量还在不断增加,同时它们的工作频率及功率也逐渐增大。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭