当前位置:首页 > 智能硬件 > 智能硬件
[导读]MB15A02是日本富士通公司开发的集成PLL频率合成器。它采用变模分频技术,是一个单片串行输入PLL频率合成器,MB15A02具有如下特点:

1 主要特点

MB15A02是日本富士通公司开发的集成PLL频率合成器。它采用变模分频技术,是一个单片串行输入PLL频率合成器,MB15A02具有如下特点:

·工作频率很高:fINMAX(fVCO)=1.1GHz(PIN MIN为-10dBm时);

·功耗低,工作时只需提供5V电压和7mA电流;

·工作温度范围宽:-40℃~85℃;

·具有两类相位检波器输出;

·采用变模分频技术,可在保证频率分辨率的条件下,提高合成器的工作频率,且不影响频率的转换时间;

·内含一个1.1GHz的双模前置分频器(选择64/65分频比或128/129分频比);

·内含串行输入18位可编程分频器和串行输入15位可编程参考分频器。

2 引脚功能

3 工作原理

MB15A02的内部结构如图2所示。图中,当二进制串行数据输入到Data引脚后,数据将在时钟的上升沿串行输入到内部移位寄存器中,当LE为高电平或开路时,电路将根据控制位把存储的数据传入锁存器。此时若其控制位为1,数据将传入15位锁存器;如果控制位为0且LE为1,数据则传入18位锁存器。图2中的可编程参考分频器包含有14位可编程参考分频器、15位锁存器和16位移位寄存器。

    串行16位数据的具体格式如图3所示。其中,S1~S14用于设定可编程参考计数器的分频比,范围为6~16383。而设置前置分频器分频比时,如SW为1,分频比为64/65,而如SW为0,则分频比为128/129,图3中的C位为控制位(设置为高电平)。MB15A02中的可编程分频器包括19位移位寄存器、18位锁存器、7位收计数器和11位可编程计数器。图4所示是其串行19位数据格式,其中S8~S18为可编程计数器分频比设置位,范围为16~2047,该分频比不能低于16。S1~S7为吸收计数器分频比的设置位,范围为0~127。C为控制位,通常设置为低电平。

4 双模分频技术的原理

M/M+1分频器在频率合成器中很常用,它有两种工作模式,即M次分频模式和M+1次分频模式,具体模式可由控制端决定。当控制端为0时,预置数为输入数据的补码,即为M分频;当控制端为1时,预置数为输入数据的反码,即为M+1分频。图5所示是双模分频锁相频率合成器的工作原理。图中,外部压控振荡器(VCO)的输出频率为fVCO,晶振的输出频率为fOSC;14位可编程参考计数器的分频比R为6~16383;11位可编程计数器的分频比N为16~2047,7位吸收计数器的分频比A为0~127,A应小于N;相位比较器的两路输入信号分别为fr和fp,双模前置分频器分频比P为64/65或128/129。双模分频器的输出可同时驱动两个可编程分频器,分别预置为N、A,并进行减法计数。在÷N计数器未计数到0时,模式控制为高电平,双模分频器的输出频率为fVCO/(p+I)。当输入A×(p+1)周期后,÷A分频器计数到0,此时模式控制电平将变为低电平,同时÷N分频器还存在N-A,因此,必须N>A。这样,受模式控制低电平控制,双模分频器的输出频率为fvco/p。再经过(N-A)×p个周期,÷N计数器也计数到0,此时两计数器重赋预置值N、A,同时PD输出比相脉冲,并将模式控制信号恢复到高电平。在一个完整的周期中,输入的周期数(即总分频比)为:

NT=A×(P+1)+(N-A)×P=P×N+A

所以:fp=fvco/[(P×N)+A]

fr=fosc/R

当相位锁定时:

fr=fp,即fvco=[(P×N)+A]fosc/R。

    FC引脚用于改变相位比较器的相位特性。根据FC脚的输入电平,可将内部积分器的输出电平(Do端)特性和相位比较器的输出电平(φR、φP)求反。此外,FC还控制着相位比较器监测端(fout)的输出电平。

5 应用电路

MB15A02的典型应用电路如图6所示。该电路是一个由微机控制的UFH移动无线电话信道的频率合成器,其工作频率为450MHz,fr=25kHz。由图可见,MB15A02的外围电路非常简单。电路中可设置环路总分频比为NT=NP+A=17733~17758,其中P=64,N=277,A=5~30。由于fvco/NT=fp=fr=fosc/R,所以,输出频率(VCO输出)应为:fvco=fr×NT=443.325~443.950MHz,步进25kHz。

    在图6中,R值可根据选定的参考晶振频率来确定。C1、C2值取决于晶振频率。应当说明的是:MB15A02的LE、FC端内部有上拉电阻器。当采用外部积分器时,Vp端连接到Vcc端。当LD为高电平时,电路为锁定状态,此时锁定检测端(LOCKDET)输出低电平。特别要注意的是,由于该电路要工作在UFH频段,因此,LPF电路设计中的0Ω电阻不能忽略。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭