当前位置:首页 > 智能硬件 > 智能硬件
[导读]可以用带有 ADC 的微控制器设计一个双线加接地组成的键盘接口。例如,可以用一个电阻分压器判定一个按下的键(参考文献 1)。微控制器的整合 ADC,其输入电阻一般在数百千欧量级,为了有足够的精度,键盘分压器应该具

可以用带有 ADC 的微控制器设计一个双线加接地组成的键盘接口。例如,可以用一个电阻分压器判定一个按下的键(参考文献 1)。微控制器的整合 ADC,其输入电阻一般在数百千欧量级,为了有足够的精度,键盘分压器应该具有相对较低电阻值,一般为数十千欧量级。但是,在电池供电系统中,电阻分压器会消耗数百毫安电流,这迫使设计者选择经典的数字矩阵开关和多条 I/O 线作替代。此外,便携设备设计通常也限制了元件的数量。

为满足这两个要求,图 1 中的电路采用了一个矩阵键盘和一个分为两行、两列的电阻网络。对于 4 X 4 按键的键盘,7 只电阻器就足以为所有按键编码,电路只在一个键保持闭合时消耗能量。而当没有按下任何按键时,待机电流近似为零。只用到两种阻值的电阻器,使 RA=RB=RC=R1和RD=RE=RF=RG=R2。为按键的x和y地址设定从0 ~ 3的值,通过解算下式,可以计算出任何键闭合时电阻器RG上的电压:

ADC的基准电压VREF驱动电阻器阵列,这样就可以进行一种比例变换,消除由于VREF波动导致的按键编码错误。下式描述了任何击键的分压比r(x,y)。

p=R1/R2表示行、列组电阻器阻值之间的比率。对于p=4,可以计算出 16 个 r(x,y) 值,它们在 [1/16, 1] 范围内,是按键位置的函数。一般来说,r分隔比率之间的最小差值出现在最靠近的键上,如 (3,2) 和 (3,3) 等 x,y 表示的键。对于一个 N 位 ADC 和 p=4的比率而言,ADC 的分辨率应满足下式:2-N-1-16-1=240-1。电路需要一个至少8位分辨率的ADC(N≥8位)。

不妙的是,标准值元件的标称容限 T 不能为此式提供理想的解决方案。于是,可以计算出最差情况下的分隔比率差:d=r(3,2)-r(3,3)。d 的最小值出现在RG与RD最小值和RA、RB、RC、RE与RF最大值时。你可以计算所有电阻器阻值,并为R1和R2的标称值定义一个通用比率p:

相同的T值适用于所有电阻器。如果n=8及p=4,前式可算出结果为 T<0.018,表示±1%公差的电阻器可以正确完成16个键的编码。另外,如果你现在使用固定公差T,可以从式中算出R1和R2值之间对p比率所要求的极限。如果T=0.01,则该公式计算出的结果变为p<4.074。

图2中的电路采用Freescale的 Nitron MC68HC908QT4微处理器,用作基于上述计算值的键盘测试基础,用电源电压VCC作为电阻器矩阵的基准电压VREF。为满足p(4.074>p>4)的要求,使用±1%公差的R1=10 kΩ和R2=40.2 kΩ,E48系列标准电阻可提供这两种标准值。表1列出了对应于16个按键的输出码,表2 则是同时按下两个键时获得的数据,表明双键组合可以得到特殊功能。

如果你的应用需要缺少由ADC产生内部中断的微控制器,可以如图 1所示将一个外部比较器连接到输出电压上。使比较器的阈值低于输出电压端的最低电压(例子中大约是VREF除16),比较器的输出作为微控制器的键盘中断源。

注意有10位ADC的微控制器(如Freescale的MC68HC908QB或Texas Instruments MSP430F11)可以用在10个电阻器编码的5 X 6键盘矩阵。重复上述分析可得到,行列p比率为5 ~ 5.51,所需电阻器公差低于4.3%,即可正确完成按键编码。R1和R2都可以从±1%公差的E48 系列中选取,R1选10 kΩ,R2则选51.1 kΩ或53.6 kΩ。

参考文献

1. Amorim, Vitor, and J Simoes, "ADC circuit optimizes key encoding," EDN, Feb 4, 1999, pg 101,  

作者:Stefano Salvatori, University of Rome, Rome, Italy, and Gabriele Di Nucci, EngSistemi, Rome, Italy

更多计算机与外设信息请关注21ic计算机与外设频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭