当前位置:首页 > EDA > 电子设计自动化
[导读]1引言众所周知,荧光灯交流电子镇流器(含霓虹灯电子变压器等)其核心部分就是一个DC/AC逆变器,它产生20~70kHz的高频功率振荡用以点亮气体放电灯具,由此会带来电磁干扰(ElectromagneticInterference,即EMI)和抗干扰

1引言

众所周知,荧光灯交流电子镇流器(含霓虹灯电子变压器等)其核心部分就是一个DC/AC逆变器,它产生20~70kHz的高频功率振荡用以点亮气体放电灯具,由此会带来电磁干扰(ElectromagneticInterference,即EMI)和抗干扰(ElectromagneticSusceptibility,即EMS)等问题。由于近年来出口市场对此类产品的需求增加,而欧美澳等国家对此类产品均有极严格的一套EMC认证要求,因此解决好EMC认证就成为厂家能否出口的成功因素之一。

可惜的是,由于条件所限,许多厂家都不可能购置价格不菲的EMC测试设备,因此对设计人员来说对付陌生的EMC认证测试的确是个颇为棘手的问题。

本文试图较系统地向读者介绍此类产品的国际认证过程,测试方法和测试经验,并在此基础上提出改进此类产品EMC特性的若干可行措施,以供厂家设计时参考。

2电子镇流器EMC认证必须通过的测试项目

表1列出了荧光灯电子镇流器为取得欧共体的CE/EMC认证所必须通过的测试项目。

在表1中,测试项1,2,3,10,11属于EMI特性,4-9则属EMS。测试项1,2为电子镇流器在电源线上发出的传导干扰电压的测试,其中EN55022标准是作为所有电子信息技术产品所必须遵守的,ClassB表示室内电器,电子镇流器是一个电源变换与电子控制电路,应属于这个范畴。另外它又是一个电力照明灯具,必须同时遵守有关照明灯具的EN55015标准。测试项3是关于电子镇流器电磁场空间幅射强度的测试,按规定应用EN55015标准,在9kHz~30MHz频段,在直径为2m的空间内测试该电子镇流器所发出的磁场,同时应用EN55022标准在30MHz~1GHz频段及在电磁屏蔽全吸收暗室内测试所发出的电场。但由于设备和场地所限,我们没有进行对磁场的测试。我们只用GTEM法对电场作了测试。考虑到此类产品电流较小,所发出的干扰磁场不大,一般无须调整都可以通过,另外用GTEM小室法代替电磁屏蔽全吸收暗室测试电场,其等效性已为国际所承认,因此我们这种做法并没有影响其测试的精确性。下面我们将选择送检厂家最容易出现不合格的那些测试项作一主要介绍。

3传导干扰电压的测试

表1EMC认证测试项目

序号 测试项目名称 适用标准 测试条件 测试结果
1 传导干扰电压发送 EN55022:1994 150kHz~30MHzClassB 合格
2 传导干扰电压发送 EN55015:1996 9kHz~30MHzClassB 合格
3 辐射干扰电磁场发送 EN55022:1994EN55015:1996 电场GTEM:30MHz~1GHz测磁场:?=2m,9kHz~30MHz 合格未测
4 静电放电抗干扰测试 EN61000?4?2:1995 接触放电:2kV、4kV,+/-大气放电:2kV、4kV、8kV,+/-级别:2 合格合格
5 射频场抗辐射干扰测试 EN61000?4?3:1995 GTEM,80MHz~1GHz3V/m,AM:1kHz,80% 合格
6 抗快速脉冲干扰试验 EN61000?4?4:1995 1kV,5kHz,5/50ns,+/-级别:2 合格
7 抗浪涌试验 EN61000?4?5:1995 共模:1kV,1.2/50μs,+/-差模:0.5/1kV,1.2/50μs,+/-级别:2 合格
8 射频共模传导抗干扰 EN61000?4?6:1995 从AC电源线上的传导型clamp注入干扰电流150kHz~230MHz,3V,1kHz 合格
9 抗电压跌落和中断试验 EN61000?4?11:1995 中断:0V,0.5ms/10ms,下跌30%:161V,50ms/1000ms级别:2 合格
10 输入电流谐波测试 EN61000?3?2:1995 25W以下用级别A标准25W及以上用级别C标准 合格
11 影响电压闪烁的测试 EN61000?3?3:1995   合格

图1传导干扰电压测试系统

图2LISN简化电路

图1示出对电子镇流器传导干扰电压测试的系统图(Rohde&Schwarz)。它由配有IEEE488总线以及EMI测试软件包ES?K1的PC机,EMI接收机(RSHS10),二线耦合-退耦网络器ESH3?5Z以及待测设备组成。其中待测镇流器与ESH3?5Z均放入一电磁屏蔽室内,ESH3?5Z是瑞士Rohde&Schwarz公司生产的一个电源阻抗稳定网络〔LineImpedanceStabilisationNetwork(LISN)〕的产品,图2示出LISN的简化电路,它的作用就是在输入电源的L和N端分别对地接入一个150Ω电阻,由于高频扼流圈L1,L2(约250μH)的插入,使得150Ω上的RF电压均来自待测的电子镇流器,我们可用一个输入阻抗为50Ω的已校准好的EMI测试接收机ESHS10(或频谱分析仪)在指定的带宽下对之进行测试。这个LISN含有拨动开关可分别测试L线和N线上的RF电压。整个测试是在软件包ES?K1的控制下进行的。

图3表示对一个节能灯电子镇流器的传导干扰电压的测试结果。图中曲线A表示Preview?test时接收机使用准峰值检波得出的测量结果,曲线B表示Preview?test时接收机使用平均值检波得出的另一测量结果,打X者和打+者分别表示准峰值检波和平均值检波的Final?test数值。所谓final?test就是指在曲线A,B的基础上各找出6个极大值(这6个值均要超出极限线或以一个小于10dBμV的距离接近极限线),在每个极大值附近再扫频一次,一般是扫6个点,得出相应6个干扰电压值然后求平均,这些平均值就用X和+来表示,统称为Final?test点。要判断该产品是否合格,就是看所有X点是否在准峰值检波的极限线(即C线)之下以及所有+点是否在平均值检波的极限线(即D线)之下,如果这两个条件都满足,我们就认定该产品通过了此项测试。表2给出了EN55015及EN55022ClassB的传导干扰电压极限允许值。

频率范围 扫频步长 接收机中频带宽 平均值检波极限电平 准峰值检波极限电平
0.009MHz~0.05MHz 0.1% 200Hz 无要求 110dBμV
0.05MHz~0.15MHz 0.1% 200Hz 无要求 90~80dBμV*
0.15MHz~0.5MHz 0.1% 10kHz 56~46dBμV* 66~56dBμV*
0.5MHz~5.0MHz 0.1% 10kHz 46dBμV 56dBμV
5.0MHz~30.0MHz 0.1% 10kHz 50dBμV 60dBμV
*极限电平随频率对数作线性减小
EN55015频率范围:0.009MHz~30.0MHz(用于照明)
EN55022频率范围:0.15MHz~30.0MHz(用于电子控制)

表2EN55015、EN55022classB的传导干扰电压极限允许值

图3一个节能灯电子镇流器传导干扰电压测试结果

需要指出的是极限电平的单位用dBμV表示,根据dBμV数=20LogV(μV),可有1μV=0dBμV。而60dBμV=1mV。在实际应用中,如果厂家需要调试这一指标,但又缺乏上述仪器,则可自已焊接一个图2所示的LISN电路,把它插入到电网与待测样品之间,然后将LISN的RF电压输出端接至示波器的Y输入轴(注意要并上一个50Ω电阻),此时会在示波器屏幕上看到一个50周近似正弦信号,但其线条比较粗且混有各种不规则的高频电压成份,就在这种情况下我们开始调试待测样品所发出的传导干扰,可选择加入下列各种抑制EMI的措施:

(1)双线绕制的共模扼流圈(见图4)

当共模或者接地噪声成为显著时使用它特别有效。开关型电源包括电子镇流器几乎无一例外地都使用它。它是由同向的双线绕组绕在铁氧体磁芯上形成一个宽带变压器允许大小相等但方向相反的电流无损耗流过(因为没有磁通形成),但却抑制了诸如共模噪声,地噪声等带来的数值不等的反向电流(因不平衡的电流在磁芯内形成一个扼流电感)。它另一优点是在正常运用时磁芯远离饱和。

(2)LC差模滤波器

当单纯使用共模滤波仍然不能解决问题时,就需要再接入差模滤波器(见图5),这是一个由电感、电容接成L型或π型的低通滤波器用以衰减电源线上传导的EMI电压。L值常取1mH~20mH,C取47nF、耐压为275VAC的安全电容。

(3)电源输入级滤波器

对于功率较大(例如大于50W)的电子镇流器或开关电源,它们产生的传导干扰会更大,这时就需要接入两级共模扼流圈以及4个旁路电容,如图6所示形成一个所谓电源输入级滤波器。L1,L2的数值在几百μH到几十μH之间,它取决于开关频率以及所要求的衰减量。接地旁路电容C2,C3的值将受到对地漏电流的限制,它一般在2?2nF以下,有些甚至小到只取几百PF。

(4)铁氧体磁珠

为了减少电源线上的RF干扰,有时可从电路内部想办法消去噪声源,这样会更经济。在一个简单的开关电源中我们可从电压和电流变化大的角度找出产生EMI的区域(见图7)在那里接入适合的磁珠。通常磁珠是用于消除电路上的高频寄生振荡以及开关级的振铃,用于大电流处较合适。多数的磁珠仅限于100Ω阻抗,这使它用在开关电路的低阻线路中特有效。有时它也与电容接成L型或π型的低通滤波器,但要防止由它而产生新的寄生振荡,同时注意磁珠不要被饱和。

图4在电源与负载间插入共模扼流圈

图5差模滤波器

图6典型的电源输入级滤波器

图7标出EMI干扰源的SMPS电路

图8GTEMCell场强测量系统配置 

图9电子镇流器幅射干扰场强测试结果

 

通过以上措施,一般的传导干扰问题都会获得解决。此时在示波器荧屏上会看见一个线条清秀的稳定正弦波,这表示RF干扰电压已受到有效抑制,再正式送样检测就能通过。

4辐射干扰场的测试

图8示出应用GTEMCell测试电子镇流器幅射电场的系统配置。GTEMCell即GigaHzTransverseElectro?MagneticCell,中文译为频率达到1G的横向电磁波小室,它是一个长约10米的锥形金属密封小室,室内悬挂一块长方形薄金属板,形成一个类似波导管那样可传输TEM波的内部空间,在锥形室内的末端壁上置有泡沫全吸收塑料以及4块并联的总值为50Ω的电阻板,后者与接收机的输入阻抗相匹配,从而实现空间无反射,利用这个小室可以很方便进行对样品发出的幅射干扰场作定量测试,并将结果自动转换成OATS(OpenAreaTestSystem)数据。

图9示出对一个电子镇流器的OATS测试结果,图中曲线A指电场的垂直分量,B指水平分量,C表示极限曲线。测量时要求A,B均不能超过C。一般来说如果设计时已考虑有相当的屏蔽措施(例如采用金属外壳)以及已使用适宜的滤波器使传导干扰降下来,那么幅射场干扰的达标是不成问题的。对于10几瓦的小功率电子镇流器甚至可采用塑料外壳。对于个别产品幅射场强特别大的,应考虑在di/dt,dv/dt大的地方加入D、C、R缓冲吸收电路。

表3给出EN55022ClassB规定的幅射场强极限值

表3EN55022classB规定的幅射场强极限值

频率范围 带宽 准峰值检波极限电平
30MHz~230MHz 120kHz 30dBμV/m距离10米远
230MHz~1000MHz 120kHz 37dBμV/m距离10米远
5输入电流谐波测试

输入电流谐波测试对厂家获得EMC认证同样是重要的。对25W以下的电子镇流器一般无须特别调整就能通过。但对25W以上的,因国际标准规定对此类照明灯具须改用ClassC要求,这时就需要加入PFC功率因数校正电路才能有可能通过。图10示出应用EMC?PARTNER公司出品的谐波测试仪HARMONICS?1000对一个21W的电子镇流器输入电流谐波分量测试结果。图10的上半部表示2~40次电流谐波测量值。下半部的曲线A表示输入AC电压波形,曲线B表示输入电流波形。此镇流器内含一无源PFC电路(见图11),因而使功率因数提高到0.987,输入电流也接近为正弦波。

图10输入电流谐波分量测试结果

图11一个含无源PFC电路的28W电子镇流器

对30W中功率以上的电子镇流器常采用独立的有源PFCIC例如TDA4847,KA7514,MC34261,UC1852等等。目前有多功能的专用IC例如KA7531,ML4830等,它们集PFC,镇流器控制及驱动器于一体,具有三步热起动,零电压开关,过热保护,可调光等功能。因而更有利于EMC认证的总体通过。

在实际调试过程中,如果厂家缺乏仪器,建议采用以下应变措施:即把一个1Ω/1W的电阻串接于输入L线上,用示波器观察电阻两端波形,如果其形状近乎正弦波,便表示输入电流谐波合格。

6抗脉冲干扰与浪涌试验

这是电子镇流器的两个常规的抗干扰试验。我们使用EMC?PARTNER公司出品的瞬态特性测试仪TRANSIENT?1000对样品进行测试。在一般情况下如果电路都接有:

(1)LC输入级滤波器;

(2)压敏电阻(其额定电压为390V或者430V);

(3)开关管耐压Vceo大于500V者。

那么通过这两项测试是没问题的。要注意的是有些厂家喜欢把压敏电阻接在输入级的最前端,有时当浪涌电压来临时压敏电阻还来不及导通而让开关管击穿。如果把压敏电阻置于滤波器LC之后,由于LC对浪涌电压有若干延迟和衰减作用,使压敏电阻适时地导通,保护了电子镇流器。

7小结

以上我们介绍了进行电子镇流器EMC认证所必须通过的测试项目,并就送检厂家常见的不合格项在测试方法,测试标准,以及不合格的成因和对策方面给出主要描述。以上内容同样适用于开关型电源。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

罗德与施瓦茨(下文简称R&S)和Applus 实验室完成EMC 测试环境中 eCall 测试。 测试包括符合 UN ECE R10 标准的不同 eCall 场景测试和功能测试,该标准规范了汽车相关的 EMC。

关键字: EMC eCall 测试 蜂窝网络模拟器

随着汽车电子技术的不断发展,汽车电子系统变得越来越复杂,其中包含了大量的电子设备。这些设备在运行过程中会产生电磁干扰,影响汽车的正常运行。因此,提高汽车电子设备的电磁兼容性(EMC)变得越来越重要。本文将详细介绍如何在汽...

关键字: 汽车电子 EMC 电磁兼容

随着汽车电子技术的不断发展,汽车电子设备数量大大增加,工作频率逐渐提高,功率逐渐增大,使得汽车工作环境中充斥着电磁波,导致电磁干扰问题日益突出。电磁兼容性(EMC)是指设备或系统在其电磁环境中能正常工作,并不对环境产生不...

关键字: 汽车电子 电磁兼容 EMC

(全球TMT2023年9月12日讯)近日,商务部、中央网信办、工业和信息化部正式印发首批12个国家数字服务出口基地复审结果,成都高新区天府软件园获评“优秀”等次,综合得分排名第二。成都天府软件园多年来聚集了包括IBM、...

关键字: 软件 腾讯 AI EMC

本文中,小编将对电磁兼容予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 电磁兼容 元器件 EMC

一直以来,电磁兼容都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来电磁兼容的相关介绍,详细内容请看下文。

关键字: 电磁兼容 EMC

以下内容中,小编将对电磁兼容的相关内容进行着重介绍和阐述,希望本文能帮您增进对电磁兼容的了解,和小编一起来看看吧。

关键字: 电磁兼容 EMC

在这篇文章中,小编将为大家带来电磁兼容的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 电磁兼容 EMC

今天,小编将在这篇文章中为大家带来电磁兼容测试的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 电磁兼容 EMC

在下述的内容中,小编将会对电磁兼容性的相关消息予以报道,如果电磁兼容性是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 电磁兼容性 电磁 EMC
关闭
关闭