当前位置:首页 > 工业控制 > 电子设计自动化

作者:兰 羽,周 茜

仪表放大器是精密差动电压放大器,其源于运算放大器,但优于运算放大器,具有低噪声、高输入阻抗、低线性误差、高共模抑制比、低失调漂移增益设置灵活和使用方便等特点,使其在传感器信号放大、数据采集、精密电子仪器设备、医疗仪器等方面广泛被采用。采用分立元件构成的仪表放大器作为血压计中压力传感器前置放大电路,设计一低成本、低功耗、高增益、高信噪比的集成单元模块放大电路。

1 血压计原理

人体血压指的是动脉血管中脉动的血流对血管壁产生的侧向垂直于血管壁的压力,主动脉血管中垂直于管壁的压力峰值为收缩压,谷值为舒张压。血压、心率是反映心血管系统状态的重要生理参数。血压计是通过充气袖套阻断上臂动脉血流来实现的,在袖套充气的过程中,在气袖压力上将重叠与心搏同步的压力波动,当气袖压力远高于收缩压时,脉搏波消失,随着袖套压力下降,脉搏波开始出现,当袖套压力从高于收缩压降到收缩压以下时,脉搏波会突然增大,直到平均压力达到最大值,然后又随袖套压力下降而衰减。血压测量就是根据脉搏波振幅与气袖压力之间关系来估算血压的,与脉搏波最大值对应的是平均值,收缩压和舒张压分别由对应脉搏波最大振幅的比例来确定。



血压测量原理如图1所示,压力传感器要求体积小,重量轻,采用固态压阻式压力传感器,其功能是将血压转换成电阻的变化量;前置放大器要求高增益、高信噪比,系统采用仪表放大器;仪表放大器放大的信号经模/数转换后,由单片机处理输出,LCD显示测量结果。



2 仪表放大器

2.1 设计原则

系统中压力传感器检测到的信号为20~200 Hz,幅度为毫量伏级甚至微伏量级,夹杂大量干扰成份,因此要求前置放大器不仅具有高增益,还要有一定的抗干扰能力。同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。因此前置放大器设计时注意:

1)系统中前置放大器必须是低噪声的,因其身的就是一个噪声源,而前端输出的信号很小可能淹没在放大器的噪声中。

2)压力传感器与放大器连接时注意阻抗匹配,前置放大器才能获得最佳的噪声性能,使放大器噪声才能达到最小。

3)放大器应具有高增益且可调。

2.2 仪表放大器的设计

2.2.1 电路结构

仪表放大器结构如图2所示,其有两部分构成,第一级由A1、A2组成,均采用高阻抗同相输入形式且结构对称,使得电路的漂移和失调都有互相抵消的作用;第二级由A3组成差动放大电路,同样具有很高的共模抑制比、极高的输入阻抗,与前级匹配。电阻R1=R2、R3=R4、R5=R6,调节Rp的电阻值,即可调节放大倍数,在A1和A2可增设调零电位器VR1和VR2,电路差模电压增益为:Au=R5/R3(1+2R1/Rp)由上式仪表放大器的增益即可由电阻R1、R3、R5预置,也可根据需要通调节RP设置仪表放大器的增益。



2.2.2 元件参数设计

核心器件可选用的集成运放相当多,在选用运放时,首先应选用低噪声、输入失调电流小、共模抑制比的运放:A1、A2运放的特性尽可能一致,电路采用了低噪声集成OP-07。电阻、电容的确定,在低噪声电路中,电阻选用低温度系数的电阻精密金属膜电阻,以获得尽可能低的漂移其噪声指数可达到0.2~1μV。放大器的放大倍数Au设定为10~10 000可kΩ,R5=R6=200 kΩ,Rp=2 kΩ足以满足Au。电路中的C主要滤除信号中的高频干扰成分,采用用云母电容或瓷片,均可降低电路噪声。

2.3 电路仿真

采用Mltisim进行电路仿真,Mltisim是性能优良电子仿真软件,适合模拟/数字电路的设计仿真,其有强大元件库,虚拟仪器库,设计界面简洁。仿真条件:输入信号频率在0.1~2kHz,幅度在1~5 mv,放大器增益10~90 dB,用Multisim设计电路如图3所示,图中集成运放采用的是通用运放μA741,如果采用低噪声运放,效果会更好。用示波器观察电路输入输出波形如图4所示,图中放大器输入电压峰值Uip=1 mV,输出电压峰值Uop=8.2 V。





3 仪表放大器安装调试

3.1 电路安装调试

在万能板上安装好电路。硬件电路如图5所示,电路加±12 V电压,当输入信号电压峰峰值Uip-p=2 mV,频率为1 kHz,增益调节到60 dB时,得到放大器的输出电压峰峰值Uop-p=1.98 V,用示波器测量输出波形如图6所示。测试表明:输入信号带宽控制在10 Hz~2 kHz内,调节电位器Rp仪表放大器的增益可达90 dB。

 



3.2 电路安装调试体会

1)仪表放大器安装时,在运放A1、A2的反馈回路增加高频消噪电容,以把电路自身噪声系数降到最低。

2)电路电源的处理,电路用正负双电源供电,电压取±12 V,稳定性要好。为了消除电源影响,可在正负电源引入端增加退耦电容,各并联两0.01 μF、0.33μF电容以消除电源对电路的影响。

3)接地的处理,电路由于两接地点间或接地点与大地间有一定的阻抗,地回路中的电流,使它们形成一定的电位差,从而形成干扰源,习惯称为浮地,解决的办法是改多点接地为单点接地。



4 结论

目前仪表放大器已有专业的集成芯片,使用简便,但价格较高,在这里根据血压测量系统特点,采用分立元件设计制作出仪表放大器,通过对电路仿真,并在万能板安装测试表明:当放大器输入信号为毫伏级,放大器增益在60 dB时,放大器的输出电压达到伏级,带宽,增益均符合系统要求。但从测试波形上看输出信号还有高频干扰,该信号经过低通滤波处理,效果会更好。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭