当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 相机标定的目的是确定相机的几何和光学参数以及相机相对于世界坐标系的方位。calibration toolbox作为一个标定工具,容纳了如Tsai、Faugeras等多种经典的标定方法,从自主标定的使用方面详细介绍了calibration toolbox的使用方法。
关键词: 相机标定; MATLAB; 标定工具箱

 随着人们对可视化要求的提高,计算机视觉作为一门新兴的高科技学科,被越来越多地应用于产品在线质量监控、微电子器件的自动检测、各种模具三维形状的测量及生产线中机械手的定位与瞄准等[1,2]领域。相机标定作为计算机视觉中最基础的一部分,已形成了很多种标定方法,有关理论问题也得到了较好的解决,当前的研究工作应该集中于如何针对具体的实际应用问题,采用特定的简便、实用、快速、准确的标定方法[3-6]。
 MATLAB中的相机标定工具箱(camera calibration toolbox)提供了各种例程以及标定方法,非常详细,甚至还提供了方格型的靶标。用户接口方便灵活,在相机标定时使用非常简单,而且该工具箱的C源码在开源计算机视觉库中开放,为深入学习进行二次开发提供了理想的条件[7-9]。摄像机的标定与相机同理。
1 相机标定原理
 标定中有3个不同层次的坐标系:世界坐标系、相机坐标系和像平面坐标系(物理坐标系和像素坐标系),如图1所示。
1.1 世界坐标系
 世界(world)坐标系也称真实或现实世界坐标系,用XwYwZw表示,它是客观世界的绝对坐标(所以也称客观坐标系)。一般的3D场景都用这个坐标系来表示。
1.2 相机坐标系
 相机坐标系是以相机为中心制定的坐标系,用XcYcZc表示,一般取相机的光学轴为Zc轴。
1.3 像平面坐标系
 图像物理坐标系是在相机内所形成的像平面xy坐标系,一般取像平面与相机坐标系平面平行。
 图像像素坐标系是在相机内所形成的uv坐标系,一般取像平面∏的左上角为原点。
 图像上每一点的亮度与物体某个表面点的反射光的强度有关,而图像点在图像平面上的位置仅与相机空间物体的相对方位和相机的内部结构有关,相机的内部结构是由相机的内部参数所决定的。为了描述相机的成像几何关系,需要对相机进行数学建模。通常采用针孔模型,也称为线性模型,这种模型在数学上是三维空间到二维平面的中心投影,由一个3×4矩阵来描述,这种模型是一个(退化的)摄影变换,因此通常又称它为摄影摄像机。
1.4 相机标定原理
 相机标定是指建立摄像机图像像素位置与场景点位置之间的关系,其途径是根据相机模型,由已知特征点的图像坐标和世界坐标求解相机的模型参数,如图2所示。相机需要标定的模型参数分为内部参数和外部参数,转换关系为:

世界坐标系中的点到相机坐标系的变换可用一个正交变换矩阵R和一个平移变换矩阵T表示,fx、fy、γ、u0、v0是线性模型的内部参数,其中fx、fy分别定义为X和Y方向的等效焦距,u0、v0是图像中心(光轴与图像平面的交点)坐标,γ是u轴和v轴不垂直因子;R和T是旋转矩阵和平移矩阵。若已知矩阵M1、M2,就可建立起世界坐标和像素坐标的对应关系。相机的标定任务就是求出每个变换矩阵中的参数。
 由于相机光学系统并不是精确地按理想化的小孔成像原理工作,存在透镜畸变,即物体点在相机成像面上实际所成的像与理想成像之间存在光学畸变误差[2,3]。主要的畸变误差有三类:径向畸变、偏心畸变和薄棱镜畸变,分别用δr、δd、δp表示。第一类只产生镜像位置的偏差,后两类则既产生径向偏差,又产生切向偏差。
 考虑畸变后,图像平面理想图像点坐标(Xu,Yu)等于实际图像点坐标(Xd,Yd)与畸变误差之和,即:

2 相机标定
 相机的输出画面分辨率为3 280×2 460,采用黑白棋盘作为标定模板,模板正方形边长为30 mm。实时标定过程如下:
(1)运行标定主函数calib_gui,显示如图3所示模式选择窗口。

通过这个操作,可以选择一次性上传所有标定照片或在电脑内存不足的情况下分张上传。无论选择哪种模式,都会有相同的用户窗口,接下来的标定过程可全部由此窗口完成,如图4所示。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭