当前位置:首页 > 工业控制 > 电子设计自动化

引言

  无线TEM(电信设备制造商)正受到布署基站架构的压力,这就是用更小体积、更低功耗、更低制造成本来建立,部署和运营。达到此目的的关键策略是从基站中分离出RF接收器和功率放大器,用它们来直接驱动各自的天线。这称为射频拉远技术(RRH)。通过基于SERDES的公共无线接口(CPRI)将基带数据传回到基站。本文主要阐述特定的低延迟变化的设计思想,在低成本FPGA上利用嵌入式SERDES收发器和CPRI IP(知识产权)核实现。

  RRH的部署

  从“Hotel”基站分离射率(RF)收发器和功率放大器的优点已经写得很多了,如图1所示。但最引人注目的是RRH在功耗、灵活部署、小的固定体积,以及整个低成本方面的优点。

  图1 射频拉远技术(RRH)方案

  随着RRH从基站里分散出来,运营商必须确保能够校准无线头和hotel BTS之间的系统延时,因为延时信息是用于系统校准的,必须使整个来回行程延时最短。随着级联的RRH,添加了每个RRH跳的变化,因此这个要求相应增加,针对单程和来回行程,CPRI规范处理这些链路时序的精确性。

  针对低延迟变化的FPGA实现

  图2展示了现有的在传统SERDES/PCS实现中的主要功能块,加亮的部分突出了引起延时变化的主要部分(如例子中展示的RX路径)

  图2 传统的CPRI接收器实现方案

  延时变化来自几个单元,诸如模拟SERDES和数字PCS逻辑,以及实际的软IP本身。模拟SERDES有相对紧凑的时序;然而,字对齐和 桥接FIFO是两个主要的引起大的延时变化的原因。提出一个解决方案前,重要的是理解为什么字对齐和桥接FIFO有这么大的影响。如图3所示,字对齐功能会导致多达9位周期的延时变化,这取决于10位周期内字对齐指针的初始位置。如果10位采样窗很好地捕获了对齐字符,例如图3中的a)那就没有延时。然而如果采样窗没有与字符对齐,导致多达9位周期的延时,如图3中的b)所示。

  图3 字对齐的延时变化

  第二,采用基于SERDES的FPGA混合结构,还需要桥接FIFO(图4)来支持时钟域的转换,从高速PCS时钟到FPGA时钟域,可以引进多达2个并行时钟周期的延时变化。2.488Gbps的速率,PCS时钟以十分之一的速率运行,这个速率产生4ns左右的时钟周期。因此,可以看到在FIFO (Tx & Rx)的每个方向有+/-8ns变化的最坏情况,导致总的+/-16ns的变化。

  图4 源于桥接FIFO的延时变化

  设计者没有看到到这些延时变化时,这个情况会更糟糕。因为它们需要在系统级进行补偿,以支持多种Tx和GPS服务。

  表1对CPRI规范(3.5节)做了延时变化的比较。可以很清楚地看到字对齐和桥接FIFO对大的延时变化起的主要作用,导致来回行程延时容差超过CPRI规范。

  表1 在原设计中延时变化的元件

  一旦确定了问题,就可以做一些较小的修改。某些实现中,通过访问寄存器的方式可以获得PCS中字对齐测量得到的延时信息,可以绕过时钟域FIFO,用FPGA逻辑来实现,在系统级可以针对延时变化进行补偿。图5说明了具有可补偿的关键延时变化的低延时设计。

  图5 低延迟时间实现

  现在做一个总结,当使用所推荐的实现方法时,引起大的延时变化的单元消失了,可以利用系统级补偿,以确保在传输期间预期的延时。当然模拟SERDES 和IP,或者客户设计仍然有延时,但是已经大大改进了整个精确性,现在可以在多跳应用中使用。表2说明了在这个配置中新的延时变化。现在时序满足了来回行程CPRI延时规范,对支持多跳的应用来说是足够的短。

  表2 在低延迟实现中的延时变化

  使用FPGA的另外一些优点

  许多年来FPGA是无线工业获得成功的一部分。从简单的粘合逻辑功能到更复杂的功能,例如在如今RRH设计中所需要的数字上变频、数字下变频、峰值因子衰减和数字预失真,充分利用了FPGA的灵活性和产品快速上市的优点。支持CPRI互联的特性,诸如嵌入式DSP块、嵌入式存储器和高速串行I/O (SERDES)的特性已与无线设备供应商的新需求完美地吻合。现在基站设计者可以在低成本、低功耗可编程平台上,如用Lattice ECP3 FPGA集成系统级的功能。

  总结

  远程基站拓扑结构为系统供应商提供了许多优点,FPGA对实现这些需要是理想的方法。因此,使用可编程、低功耗、低成本中档FPGA解决方案是下一代BTS开发的最好的方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业...

关键字: FPGA 核心板 开发板

在现代电子系统中,现场可编程门阵列(FPGA)凭借其开发时间短、成本效益高以及灵活的现场重配置与升级等诸多优点,被广泛应用于各种产品领域。从通信设备到工业控制,从汽车电子到航空航天,FPGA 的身影无处不在。为了充分发挥...

关键字: 可编程门阵列 FPGA 数字电源

2025年8月4日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售Altera®的Agilex™ 3 FPGA C系列开发套件。此开...

关键字: FPGA 边缘计算 嵌入式应用

内窥镜泛指经自然腔道或人工孔道进入体内,并对体内器官或结构进行直接观察和对疾病进行诊断的医疗设备,一般由光学镜头、冷光源、光导纤维、图像传感器以及机械装置等构成。文章介绍了一款基于两片图像传感器和FPGA组成的微型3D内...

关键字: 微创 3D内窥镜 OV6946 FPGA

运用单片机和FPGA芯片作为主控制器件 , 单片机接收从PC机上传过来的显示内容和显示控制命令 , 通过命令解释和数据转换 , 生成LED显示屏所需要的数据信号和同步的控制信号— 数据、时钟、行同步和面同步 。FPGA芯...

关键字: 单片机 FPGA LED显示屏

在异构计算系统中,ARM与FPGA的协同工作已成为高性能计算的关键架构。本文基于FSPI(Fast Serial Peripheral Interface)四线模式,在150MHz时钟频率下实现10.5MB/s的可靠数据...

关键字: ARM FPGA FSPI

在全球FPGA市场被Xilinx(AMD)与Intel垄断的格局下,国产FPGA厂商高云半导体通过构建自主IP核生态与智能时序约束引擎,走出差异化高端化路径。本文深入解析高云半导体FPGA工具链的两大核心技术——全栈IP...

关键字: FPGA 高云半导体

2025年6月12日,由安路科技主办的2025 FPGA技术沙龙在南京正式召开,深圳市米尔电子有限公司(简称:米尔电子)作为国产FPGA的代表企业出席此次活动。米尔电子发表演讲,并展出米尔基于安路飞龙派的核心板和解决方案...

关键字: FPGA 核心板 开发板

高 I/O、低功耗及先进的安全功能,适用于成本敏感型边缘应用

关键字: FPGA I/O 机器视觉

本文讨论如何为特定应用选择合适的温度传感器。我们将介绍不同类型的温度传感器及其优缺点。最后,我们将探讨远程和本地检测技术的最新进展如何推动科技进步,从而创造出更多更先进的温度传感器。

关键字: 温度传感器 CPU FPGA
关闭