当前位置:首页 > 工业控制 > 电子设计自动化

1 引言

HDB3(High Density Bipolar三阶高密度双极性)码是在AMI码的基础上改进的一种双极性归零码,它除具有AMI码功率谱中无直流分量,可进行差错自检等优点外,还克服了AMI码当信息中出现连“0”码时定时提取困难的缺点,而且HDB3码频谱能量主要集中在基波频率以下,占用频带较窄,是ITU-TG.703推荐的PCM基群、二次群和三次群的数字传输接口码型,因此HDB3码的编解码就显得极为重要了[1]。目前,HDB3码主要由专用集成电路及相应匹配的外围中小规模集成芯片来实现,但集成程度不高,特别是位同步提取非常复杂,不易实现。随着可编程器件的发展,这一难题得到了很好地解决。

本文利用现代EDA设计方法学和VHDL语言及模块化的设计方法,设计了适合于FPGA实现的HDB3编译码器的硬件实现方案。不但克服了分立硬件电路带来的抗干扰差和不易调整等缺陷,而且具有软件开发周期短,成本低,执行速度高,实时性强,升级方便等特点。

2 HDB3编解码原理

要了解HDB3码的编码规则,首先要知道AMI码的构成规则,AMI码就是把单极性脉冲序列中相邻的“1”码(即正脉冲)变为极性交替的正、负脉冲。将“0”码保持不变,把“1”码变为+1、-1交替的脉冲。如:
NRZ码:100001000011000011
AMI码:-10000 +10000-1 +10000-1 +1
HDB3码是一种AMI码的改进型,它的编码原理可简述为,在消息的二进制代码序列中:

(1)当连“0”码的个数不大于3时,HDB3编码规律与AMI码相同,即“1”码变为“+1”、“-1”交替脉冲;

(2)当代码序列中出现4个连“0”码或超过4个连“0”码时,把连“0”段按4个“0”分节,即“0000”,并使第4个“0”码变为“1”码,用V脉冲表示。这样可以消除长连“0”现象。为了便于识别V脉冲,使V脉冲极性与前一个“1”脉冲极性相同。这样就破坏了AMI码极性交替的规律,所以V脉冲为破坏脉冲,把V脉冲和前3个连“0”称为破坏节“000V”;

(3)为了使脉冲序列仍不含直流分量,则必须使相邻的破坏点V脉冲极性交替;

(4)为了保证前面两条件成立,必须使相邻的破坏点之间有奇数个“1”码。如果原序列中破坏点之间的“1”码为偶数,则必须补为奇数,即将破坏节中的第一个“0”码变为“1”,用B脉冲表示。这时破坏节变为“B00V”形式。B脉冲极性与前一“1”脉冲极性相反,而B脉冲极性和V脉冲极性相同。

如:
NRZ码:100001000011000011

AMI码:-10000 +10000 -1+10000-1 +1

HDB3码:-1000 -V +1000 +V -1+1 –B 00 -V +1 -1

虽然HDB3码的编码规则比较复杂,但译码却比较简单。从上述原理看出:每一个破坏符号V总是与前一非0符号同极性(包括B在内)。这就是说,从收到的符号序列中可以容易地找到破坏点V,于是也断定V符号及其前面的3个符号必是连0符号,从而恢复4个连0码,再将所有-1变成+1后便得到原消息代码[2]。

3 编解码器设计

3.1 编码器设计

由于VHDL不能处理负电平,只能面向“1”、“0”两种状态,所以要对它的输出进行编码,如表1所示。编码的实现是根据HDB3编码原理把二进制码编码成两路单极性的码字输出,之后经过单双变换模块形成HDB3码。在编码过程中,要经过连0检测、破坏节判断、破坏节间“1”的个数判断、调整“1”的符号输出等步骤,编码部分可分为4个模块,编码流程如图1所示[3]。



图1编码流程图

在进行HDB3编码器的设计时,需注意以下两个问题:

(1) 考虑将某些“0”改为“1”

用一个四位移位寄存器来对输入的序列进行检测,当检测到4个连“0”时,将其第四个“0”改为“1”。再设置一个T触发器来检测两个相邻的破坏节之间“1”的个数,若T触发器为“0”则说明两个相邻的破坏节之间“1”的个数为偶数,需要将第2个破坏节的第一个“0”置“1”,若T触发器为“1”,则说明两个相邻的破坏节之间“1”的个数为奇数,第2个破坏节的第一个“0”不变。

(2) 正、负号的考虑

除了破坏节的V即“1”的符号与它前面最近的“1”的符号相同外,其他的“1”的符号都是正、负交替的。所以再设置一个T触发器,当它检测到“1”时就使DATA1翻转。当然,这样就不可避免地使破坏节的V的符号也出现翻转,为了防止它的翻转,用一个三位移位寄存器来跟踪V码,以保证V码的符号不变(与它前面最近的“1”的符号相同)。

本文在程序的实体中定义了2个输入端口:时钟、伪随机序列,一个两位的输出数据(编码后的输出)。程序的结构体中使用的是进程语句,共采用4个进程,分别完成判断4连“0”位置并插入V、记相邻V码间1个数、跟踪V码位置及编码输出的功能。敏感信号均选用的是时钟信号,对于其任一变化都将同时启动4个进程,并行执行。在程序中共使用了5个信号,代表了电路的寄存器效果,配置到电路中也相当于寄存器。

3.2 解码器设计

解码设计是根据HDB3码的特点首先检测出极性破坏点,即找出4连零码中添加V码的位置(破坏点位置),其次去掉添加的V码,最后去掉4连零码中添加的B码以将其还原成单极性不归零码。

由HDB3码的编码规则可知,“0000”都被“000+1”或“000-1”或“+100+1”或“-100-1”取代,所以,只要能检测出“+1000+1”、“-1000-1”、 “+100+1”、“-100-1”、将它们分别改为“10000” 、“10000”、“0000”、“0000”就可以了。
当然“+1”、“-1”、“0”还是由Data1,Data0来表示,那么就需要有两个5位移位寄存器(C和D),Data0通过D,Data1通过C。通过D,C来检测,如果测到两个移位寄存器分别为“10001”、“0xxx0”或“10001”、“1xxx1”或“1001x”、“1xx1x”或“1001x”、“0xx0x”,数据输出是将D里面的数据流输出。所以只要将D中所测到的以上数据分别改为“10000”、“10000”、“0000x”、“0000x”,这样就可以得到HDB3码的解码了。

4 仿真和实验结果分析

编译码器在QuartusII上仿真的波形分别如图2和图3所示。图2中fen_clk为分频后时钟信号,load 为使能信号,Q为伪随机序列,data为编码输出。由于输入的数据流经过了5个寄存器,所以输出延迟了4个时钟脉冲周期。但由于时钟频率很高,所以影响不大。



图2编码器时序仿真波形图



图3解码器仿真波形
把上述设计下载到Altera EP1C3T144C8芯片上,并通过硬件调试、测试,在示波器上得到伪随机信号波形、编码波形和解码波形分别如图4和5所示。其中,CH1为伪随机信号,CH2分别为编码和解码信号。测试结果和时序仿真结果无失真。随机信号输入相对编码信号输出延迟了5个单位时钟。解码信号延时了11个单位时钟。



图2编码器时序仿真波形图



图5 伪随机信号和解码信号波形

5 结论

实践表明,运用FPGA来实现NRZ码到HDB3码的转换与采用专用集成电路CD22103相比,不仅给调试带来了方便,而且可以把编码电路和解码电路及其它电路集成在同一块FPGA芯片中,减少了外接元件,提高了集成度。该设计已成功应用于网络化集中照明控制系统中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业...

关键字: FPGA 核心板 开发板

在现代电子系统中,现场可编程门阵列(FPGA)凭借其开发时间短、成本效益高以及灵活的现场重配置与升级等诸多优点,被广泛应用于各种产品领域。从通信设备到工业控制,从汽车电子到航空航天,FPGA 的身影无处不在。为了充分发挥...

关键字: 可编程门阵列 FPGA 数字电源

2025年8月4日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售Altera®的Agilex™ 3 FPGA C系列开发套件。此开...

关键字: FPGA 边缘计算 嵌入式应用

内窥镜泛指经自然腔道或人工孔道进入体内,并对体内器官或结构进行直接观察和对疾病进行诊断的医疗设备,一般由光学镜头、冷光源、光导纤维、图像传感器以及机械装置等构成。文章介绍了一款基于两片图像传感器和FPGA组成的微型3D内...

关键字: 微创 3D内窥镜 OV6946 FPGA

运用单片机和FPGA芯片作为主控制器件 , 单片机接收从PC机上传过来的显示内容和显示控制命令 , 通过命令解释和数据转换 , 生成LED显示屏所需要的数据信号和同步的控制信号— 数据、时钟、行同步和面同步 。FPGA芯...

关键字: 单片机 FPGA LED显示屏

在异构计算系统中,ARM与FPGA的协同工作已成为高性能计算的关键架构。本文基于FSPI(Fast Serial Peripheral Interface)四线模式,在150MHz时钟频率下实现10.5MB/s的可靠数据...

关键字: ARM FPGA FSPI

在全球FPGA市场被Xilinx(AMD)与Intel垄断的格局下,国产FPGA厂商高云半导体通过构建自主IP核生态与智能时序约束引擎,走出差异化高端化路径。本文深入解析高云半导体FPGA工具链的两大核心技术——全栈IP...

关键字: FPGA 高云半导体

2025年6月12日,由安路科技主办的2025 FPGA技术沙龙在南京正式召开,深圳市米尔电子有限公司(简称:米尔电子)作为国产FPGA的代表企业出席此次活动。米尔电子发表演讲,并展出米尔基于安路飞龙派的核心板和解决方案...

关键字: FPGA 核心板 开发板

高 I/O、低功耗及先进的安全功能,适用于成本敏感型边缘应用

关键字: FPGA I/O 机器视觉

本文讨论如何为特定应用选择合适的温度传感器。我们将介绍不同类型的温度传感器及其优缺点。最后,我们将探讨远程和本地检测技术的最新进展如何推动科技进步,从而创造出更多更先进的温度传感器。

关键字: 温度传感器 CPU FPGA
关闭