当前位置:首页 > 工业控制 > 电子设计自动化

摘要:静止同步补偿器(STATCOM)因具有无功补偿响应速度快、连续调节范围宽等优点,已经现代电力系统中重要的补偿设备之一。对不同控制策略STATCOM的补偿效果进行研究是谊领域值得关注的关键问题。在此对STATCOM主电路进行四重化的结构优化,有效降低谐波含量,控制策略上采用电流间接控制方法,在Matlab/Simulink平台上实现了补偿系统的建模和仿真,通过比较补偿前后系统功率因数的变化,验证了所采用控制策略的正确性和有效性。

随着工业化进程的加速,对电能质量要求也日益严格,如何提高现代电力系统可靠性、可控性、快速性已成为亟待解决的问题。静止同步补偿器(Static Synchronous Compensator,STATCOM)是柔性交流输电系统(FACTS)的重要设备之一,在稳定系统电压、提高功率因数、增加传送容量等方面发挥着重要的作用,代表着无功补偿技术的发展方向。STATCOM主电路架构不同、控制策略不同的对应着不同的补偿效果和成本。

1 STATCOM工作原理简述

采用STATCOM进行补偿无功具有连续调节范围大、控制响应精准快、运行经济可靠等优点。其工作原理图如图1所示。STATCOM主电路由逆变器和直流侧电容构成,经变压器接入电力系统。在理想情况下STATCOM装置等效为“可控电压源”,设其输出电压为UI,系统电压为US,两者同相位。当UI>US时,电流从系统流向STATCOM且电流相位超前系统电压90。,装置输出感性无功;反之,当UI

稳态时,STATCOM从系统吸收的有功功率和无功功率的计算公式如下:

式中:US是系统电压;R是系统等效电阻;δ是系统电压和装置输出电压之间的相位差。当δ<0,Q<0吸收容性无功;当δ>0,Q>0吸收感性无功。通过调整δ,就可对STATCOM的无功功率进行连续调节。

2 STATCOM的间接电流控制策略

根据是否直接控制输出电流来分,STATCOM可分为电流直接控制和电流间接控制两种控制策略。间接电流控制是指对STATCOM装置中逆变器所产生的交流电压基波的相位和幅值的控制,以此来间接控制STATCOM交流侧电流。间接电流控制分为单δ控制和δ与θ配合控制。采用单δ控制时,虽然简单有效,但忽略了对θ的控制,使得直流侧电容电压稳定困难、损耗增加。在δ与θ配合控制中,δ角的控制用于无功功率控制,而对θ角进行控制可起到维持电容电压稳定的作用。因此可对无功功率控制采用逆系统非线性PI方法,对STATCOM直流侧电容电压采用传统的PI控制方法,两个控制环互相独立,互不干扰。

图2为δ与θ配合的逆系统PI控制框图。图中,三相瞬时电压uA,B,C和瞬时电流iA,B,C,经过α,β变换和瞬时无功功率计算得到补偿无功功率Q,并与参考补偿无功功率Qref进行比较,经过PI环节得到控制量δ,参考电压uref与直流侧电压udc进行比较,经过PI环节得到控制量θ,将控制量δ和θ作为控制参数输入STATCOM控制系统。

3 系统模型搭建及仿真结果分析

通过以上对STATCOM的原理和控制策略的分析,在此将在Matlab/Simulink环境下对其进行系统级的建模仿真。Matlab/Simulink被广泛应用于电力系统的建模和仿真中。

3.1 系统模型搭建

按照图3所示,在Matlab/Simulink中搭建基于间接电流控制的STATCOM的系统仿真模型。图中用无穷大系统电压的有效值为,频率为50Hz,额定负荷为S=9000+j9000。STATCOM的主电路48脉冲变流器(48 Pulses Inverter)组成。系统仿真可采取离散化处理来加快仿真速度,仿真步长设定为TS=2.5×10-5s。

3.2 仿真结果分析

仿真中,系统负荷为三相平衡负荷,因此可取A相电压和电流波形作为代表进行观察。图4为补偿前系统A相电压电流相位比较图。在图中,电压波形的幅值较电流波形的幅值大,电压相位超前电流相位90°。图5为系统补偿前的功率因数,其数值保持在0.707,与理论计算值相符合。

图6为补偿后系统A相电压电流相位比较图,电压和电流波形相位已基本趋于一致,因此可以获得较高的功率因数。


图7给出的系统补偿后功率因数曲线的也证明了这一点。因变流器直流侧电容需要进行充电,所以在起始阶段功率因数发生振荡,完成电容充电后振荡很快消失(在0.06秒附近),之后STATCOM进入稳态工作区,功率因数接近于1。

4 结语

本文对电流间接控制策略进行了分析,实现了基于电流间接控制方法的STATCOM的系统仿真,仿真结果验证了所建立模型的正确性和有效性。电流间接控制方法的优点在于结构相对简单,技术也比较成熟,但与电流直接控制方法相比,间接控制方法存在控制精度较低,电流响应速度较慢。应针对其优缺点做进一步研究,根据不同场合合理选择。

作者:罗映红 张鹏 周碧英 李俊贤 来源:现代电子技术

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭