当前位置:首页 > 工业控制 > 电子设计自动化

0 引 言

传统的数据采集系统一般采用单片机,系统大多通过PCI总线完成数据的传输。其缺点是数学运算能力差;受限于计算机插槽数量和中断资源;不便于连接与安装;易受机箱内电磁环境的影响。这些问题遏制了基于PCI总线的数据采集系统的进一步开发和应用。因此,需要一种更为简便通用的方式完成采集系统和计算机数据的交互。

数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下应尽可能地提高采样速度,以满足实时采集、实时处理和实时控制的要求。实践表明,采用ARM 32位嵌入式微处理器作为控制器,用USB(通用串行总线)和上位机连接构成的数据采集系统能大大提高系统数据处理的能力,降低对PC机和接口速度的依赖。

1 系统硬件设计

实现系统功能的基本思路是:以CPLD/FPGA实现仪器的数字平台,和ARM嵌入式处理器及单片机一起实现对整机的智能控制和高速的数据处理。

1.1 系统框图

系统原理方框图如图1所示,该系统主要由微处理器、数字逻辑平台、输入控制、A,B通道输入处理、C通道输入处理、整形、A/D转换、采样时序控制、键盘液晶显示、存储器扩展等模块构成。

1.2 系统结构图

系统硬件如图2所示,利用一片规模较小的CPLD和一片规模较大的FPGA组合构成系统的数字逻辑平台。CPLD主要用作输入控制,FPGA则连接了系统的其他各个部分。CPLD/FPGA可实现现场编程,使用CPLD/FPGA可使设计方便,利用它灵活、校验快以及设计可随意改变的特点,可大大缩短研制时间。

1.3 主要部分功能

1.3.1 微处理器

系统采用由Philips公司生产的ARM 32位微处理器LPC2105作为主CPU,进行高速的数据处理,用8位单片机P89C51RD2作为辅CPU,进行速度较慢的数据处理,控制其他外围芯片和模块实现A,B通道模拟带宽100 MHz、峰值电压±100 V和C通道二极管通断、电压、电流、电阻值的数据采集功能。

1.3.2 A,B通道部分

通过自动增益电路(AGC)即程序控制放大器,将被测模拟信号调理到适合ADC芯片(AD9288)采样的范围。根据频率的大小和触发方式,运用实时采样或等效采样对调理后的模拟信号进行采样(A/D转换)。利用高速FIFO存贮器(IDT72V261LAl0A)存储采样后得到的数据。

结合键盘操作和系统设置,对采样后的数据进行数学运算,将还原后的波形数据和参数送液晶显示器显示或存入闪存里面或通过USB接口传送给PC机,从而实现了A,B通道高速数据采集的功能。

1.3.3 C通道部分

C输入通道为多功能输入通道,系统通过控制继电器矩阵来选择不同的模块测量电压、电流或二极管的通断和电阻。被测元件参数或电压、电流经过多功能转换电路处理后,其信号送24 b的A/D转换器ADS1211采样后送单片机P89C51RD2,分析被测元件或电压、电流的参数值,从而实现了C通道高精度数据采集的功能。

1.3.4 键盘、液晶显示接口电路

本系统采用4×8的键盘和320×240不带驱动器的液晶显示模块,驱动器和显存设计在FPGA内。以上系统通过USB接口与PC机通信,在上位机的控制下,实现可视化人机交互界面。同时系统也保留了传统的RS 232接口,但只是用于ARM和单片机的编程下载。

2 软件设计流程

LPC2105芯片作为系统主控制中心及数据处理中心,整个系统的运转受到它的控制,例如响应用户的按键操作,发出通道控制,A/D采样时钟控制,FIFO写时钟的选择,菜单及系统状态显示,FIFO数据的处理,信号或参数的自动测试等。

数据采集卡的软件程序结构如图3所示,可分为系统初始化模块、键语分析模块、系统核心控制模块、通道控制模块、触发控制模块、A/D采样控制模块、FIFO读写控制模块、读取频率字模块、参数测试模块、状态显示模块、波形显示模块、存储控制模块、其他功能模块。

系统的初始化模块包括开机自检、硬件参数初始化、系统状态初始化(如通道的波形显示状态初始化)等。键语分析模块对面板上的用户输入进行分析处理,通过核心控制模块调用相应的功能处理模块,通过对通道控制模块、触发控制模块、A/D采样控制模块、FIFO读写控制模块、读取频率字模块、参数测试模块、状态显示模块、波形显示模块、存储控制模块、其他功能模块的函数调用来实现对来自键语分析的处理功能。状态显示模块显示程序运行时的各种状态,如当前数据采集的扫描速率、通道的垂直灵敏度等。波形显示模块显示采集的波形。

整个系统的程序又可分成底层驱动和上层软件。底层驱动指对本系统其他外设或器件直接控制或访问的程序部分,包括LPC2105和单片机的初始化(即对片内各核心寄存器的操作赋值、对片上外设的初始化赋值、对片内各外设中断及外部中断的控制操作)。上层软件主要指:菜单的设计及显示、数据的处理、波形的恢复及平滑等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭