当前位置:首页 > 单片机 > 单片机
[导读]已经有不少的文章介绍了有关μC/OS-II这个实时内核及其应用。在很多的处理器上, μC/OS-II都得到了应用。μC/OS-II是一种源码公开、可移植、可固化、可裁减、可剥夺的 实时多任务操作系统。特别适用于用户任

已经有不少的文章介绍了有关μC/OS-II这个实时内核及其应用。在很多的处理器上,
μC/OS-II都得到了应用。μC/OS-II是一种源码公开、可移植、可固化、可裁减、可剥夺的
实时多任务操作系统。特别适用于用户任务较多,而对实时性要求较严格的场合。

  μC/OS-II内核是一个占先式内核,用户视任务的轻重缓急不同赋予任务不同的优先
级。一般来说,用户任务的实时性要求越高,则应赋予的优先级也越高;对那些要求不甚严
格的任务,赋予的优先级应低一些。对突发事件,像A/D采样后的数据读取等,则应采用中
断,实时响应,因而,中断享有最高的优先级。优先级高的任务在进行调度时,优先得到资
源,因而能及时进入运行态运行;优先级低的得不到资源而进入就绪态,等待下一次任务调
度。由于任务优先级的唯一性,μC/OS-II内核能在不同任务间井然有序地调度运行。

  μC/OS-II内核的功能强大,提供了用于共享资源的信号灯,用于进程通信的消息队列
和邮箱等,是一个比较全面的系统。但有些地方仍然值得改进,比如该系统不支持时间片的
任务调度,因而一旦任务进入了死循环,调度程序无法调度,其它的任务也就得不到及时运
行处理。解决的方法也很简单,只要在定时中断服务程序中调用函数OSIntCtxSw()即可。

  μC/OS-II内核的另外一个值得改进的地方是它的堆栈处理。为了确保运行的安全可
靠,μC/OS-II内核将每个任务的堆栈空间都按最大化处理,结果导致RAM的需求变大,往往
还需外扩RAM,而浪费过多。下面详细讨论如何改进μC/OS-II内核的堆栈结构设计。

1 μC/OS-II的堆栈结构

  在堆栈的处理上,μC/OS-II为每个任务分配一个独立的堆栈,堆栈空间按任务中最大
需求进行分配。这种方法可保证程序可靠运行,但却是以浪费大量的空间为代价。对一些小
系统来说,没有扩展外部RAM,内部RAM相当小,RAM的空间利用就非常重要了。下面就来探
讨如何改进μC/OS内核,以达到减少任务栈的内存需求。

  在μC/OS-II中,每个任务都定义了一个独立的堆栈空间,这个堆栈空间用来存放任务
的相关信息,具体包括以下几个部分(如图1所示):
◆ 任务中定义的局部变量及被调用函数可能在栈上分配的局部变量;
◆ 任务中各个函数的返回地址;
◆ 发生中断时需要保存的上下文;
中断嵌套时需要保存的上下文。
       
  在这4个部分中,前3个的内存需求是比较容易估算的,只要察看反汇编代码,并计算各
个函数的栈需求,留有一定的裕量就可以了。但是第4部分的栈空间使用量是随中断嵌套的
深度而不断增加的,是不确定的,一般方法是定义一个充分大的栈空间,使之不会溢出。但
为每个任务都定义一个充分大的栈空间,会导致栈空间的浪费。如果将第4部分独立出来,
单独为它定义一个较大的空间,在任务栈中去掉原来的第4部分,这样,就可大大减少栈空
间的浪费,减少对内存的需求。实际上,这是可行的。在μC/OS-II中,内核为中断嵌套的
层数定义了一个全局变量OSIntNesting。系统在进行任务调度时,先要判断OSIntNesting是
否为0,如果OSIntNesting不为0,则不进行任务切换。也就是说:在OSIntNesting为1(当
前只有一个中断,并且没有嵌套中断)时,如果发生了嵌套的中断(不管嵌套的层数有多
深),那么所有嵌套的中断一层一层地都返回,直到OSIntNesting再次为1时止,任务栈是
不会切换的,栈指针始终在同一个任务的栈空间中变化。因而,可以为中断嵌套单独定义一
个中断嵌套栈。在发生第1次中断时,中断服务程序将栈空间切换到中断嵌套栈,这样,以
后发生的嵌套中断就一直使用这个栈空间。在中断返回到第1次中断时,即OSIntNesting为1
时,中断服务程序再从中断嵌套栈切换回任务栈。这样就实现了中断任务的切换,减少了内
存需求。下面以此思路,来进一步讨论堆栈处理的结构设计。

2 μC/OS-II的堆栈改进设计

  按上述设计,可设置中断嵌套栈OSInterruptStk,对中断服务程序做如下修改。
① 保存全部CPU寄存器。
② 直接将OSIntNesting加1。
增加:判断OSIntNesting是否等于1,如果不是则转到3。
增加:将栈指针SP保存到OSTCBCur->OSTCBStkPtr。
增加:将SP指向OSInterruptStk的栈顶(注意栈增长的方向)。
③ 执行用户代码做中断服务。
④ 调用OSIntExit。
增加:判断OSIntNesting是否等于0,如果不是则转到5。
增加:从OSTCBCur->OSTCBStkPtr中恢复栈指针SP。
⑤ 恢复所有CPU寄存器。
⑥ 执行中断返回指令。
此时,任务的堆栈分布情况如图2所示。
这样,就实现了中断嵌套栈和任务栈的双向切换。此外,还需修改OSIntCtxSw()函数,原始
的OSIntCtxSw()函数的写法如下:
① 调整栈指针,去掉在调用OSIntExit()和OSIntCtxSw()过程中入栈的多余内容;
② 将当前栈指针保存到OSTCBCur中,即STCBCur->OSTCBStkPtr = SP;
③ 如果需要则调用OSTaskSwHook;
④OSTCBCur = OSTCBHighRdy;
⑤OSPrio = OSPrioHighRdy;
⑥ 从OSTCBCur中恢复栈指针,SP= OSTCBCur ->OSTCBStkPtr;
⑦ 恢复保存了的CPU寄存器;
⑧ 执行中断返回指令。
      
  新的写法只需将原写法中的1、2去掉即可,因为1、2步只是保存旧任务的栈指针,而新
写法中,这些步被移到了“中断服务程序”中。作了上述修改后,原来在每个任务栈中都必
须的第4部分已被移到了中断嵌套栈,实现了降低内存需求的目的。

结 语

  μC/OS-II内核的堆栈处理适用于RAM存储器充足,任务切换频繁,对实时性要求严格的
场合,一般主要用在16位或32位微处理器较大的系统设计中。对于一般的小系统,由于RAM
空间有限,任务不多,切换也不是太频繁,因而,在堆栈处理上可以采用中断嵌套栈。这大
大减少了对RAM存储器的需求,不但简化了硬件设计,而且还降低了成本。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭