当前位置:首页 > 单片机 > 单片机
[导读]简单的说,进入了电子,不管是学纯模拟,还是学单片机,DSP、ARM等处理器,或者是我们的FPGA,一般没有不用到按键的地方。按键:人机交互控制,主要用于对系统的控制,信号的释放等。因此在这里,FPGA上应用的按键消

简单的说,进入了电子,不管是学纯模拟,还是学单片机,DSP、ARM等处理器,或者是我们的FPGA,一般没有不用到按键的地方。按键:人机交互控制,主要用于对系统的控制,信号的释放等。因此在这里,FPGA上应用的按键消抖动,也不得不讲!

一、为什么要消抖动

如上图所示,在按键被按下的短暂一瞬间,由于硬件上的抖动,往往会产生几毫秒的抖动,在这时候若采集信号,势必导致误操作,甚至系统崩溃;同样,在释放按键的那一刻,硬件上会相应的产生抖动,会产生同样的后果。因此,在模拟或者数字电路中,我们要避免在最不稳定的时候采集信号,进行操作。

对此一般产用消抖动的原理。一般可分为以下几种:

(1)延时

(2)N次低电平计数

(3)低通滤波

在数字电路中,一般产用(1)(2)种方法。后文中将详细介绍。

二、各种消抖动

1. 模拟电路按键消抖动

对于模拟电路中,一般消抖动用的是电容消抖动或者施密特触发等电路,再次不做具体介绍。

2. 单片机中按键消抖动

对于单片机中的按键消抖动,本节Bingo根据自己当年写过的单片机其中的一个代码来讲解,代码如下所示:

unsigned char key_scan(void)

{

if(key == 0) //检测到被按下

{

delay(5); //延时5ms,消抖

if(key != 0)

retrurn 0; //是抖动,返回退出

while(!key1); // 确认被按下,等下释放

delay(5); //延时5ms,消抖

while(!key1); //确认被释放

return 1; //返回按下信号

}

return 0; //没信号

}

针对以上代码,消抖动的顺序如下所示:

(1)检测到信号

(2)延时5ms,消抖动

(3)继续检测信号,确认是否被按下

a) 是,则开始等待释放

b) 否,则返回0,退出

(4)延时5ms,消抖动

(5)确认,返回按下信号,退出

当然在单片机中也可以循环计数来确认是否被按下。Bingo认为如此,太耗MCU资源,因此再次不做讲述。

3. FPGA中的按键消抖动

对于FPGA中的消抖动,很多教科书上都没有讲述。但Bingo觉得这个很有必要。对于信号稳定性以及准确性分析,按键信号必须有一个稳定的脉冲,不然对系统稳定性有很大的干扰。

此处Bingo用两种方法对FPGA中按键消抖动分析。其中第一种是通过状态机的使用直接移植以上MCU的代码,这个思想在FPGA状态机中很重要。第二种,通过循环n次计数的方法来确认是否真的被按下,这种方法很实用在FPGA这种高速并行器件中。

(1)利用状态机移植MCU按键消抖动

此模块由Bingo无数次修改测试最后成型的代码,在功能上可适配n个按键,在思想上利用单片机采用了单片机消抖动的思想。具体代码实现过程请有需要的自行分析,本模块移植方便,Verilog代码如下所示:

/*************************************************

* Module Name : key_scan_jitter.v

* Engineer : Crazy Bingo

* Target Device : EP2C8Q208C8

* Tool versions : Quartus II 11.0

* Create Date : 2011-6-26

* Revision : v1.0

* Description :  

**************************************************/

module key_scan_jitter

#(

parameter KEY_WIDTH = 2

)

(

input clk,

input rst_n,

input [KEY_WIDTH-1:0] key_data,

output key_flag,

output reg [KEY_WIDTH-1:0] key_value

);

reg [19:0] cnt; //delay_5ms(249999)

reg [2:0] state;

//-----------------------------------

always @(posedge clk or negedge rst_n)

begin

if(!rst_n)

cnt <= 20'd0;

else

begin

cnt <= cnt + 1'b1;

if(cnt == 20'd249999)

cnt <= 20'd0;

end

end

//-----------------------------------

reg key_flag_r;

reg [KEY_WIDTH-1:0] key_data_r;

always@(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

key_flag_r <= 1'b0;

key_value <= {KEY_WIDTH{1'b0}};

end

else if(cnt == 20'd249999) //Delay_5ms

begin

case(state)

0:

begin

if(key_data != {KEY_WIDTH{1'b1}})

state <= 1;

else

state <= 0;

end

1:

begin

if(key_data != {KEY_WIDTH{1'b1}})

state <= 2;

else

state <= 0;

end

2:

begin

key_flag_r <= 1'b1;

key_value <= key_data; //lock the key_value

state <= 3;

end

3:

begin

key_flag_r <= 1'b0; //read the key_value

if(key_data == {KEY_WIDTH{1'b1}})

state <= 4;

else

state <= 3;

end

4:

begin

if(key_data == {KEY_WIDTH{1'b1}})

state <= 0;

else

state <= 4;

end

endcase

end

end

//---------------------------------------

//Capture the falling endge of the key_flag

reg key_flag_r0,key_flag_r1;

always@(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

key_flag_r0 <= 0;

key_flag_r1 <= 0;

end

else

begin

key_flag_r0 <= key_flag_r;

key_flag_r1 <= key_flag_r0;

end

end

assign key_flag = key_flag_r1 & ~key_flag_r0;

endmodule

信号线说明如下:

clk

系统最高时钟

rst_n

系统复位信号

Key_data

按键信号(可根据需要配置为n位)

Key_flag

按键确认信号

Key_vaule

按键返回值

雷同上述MCU按键消抖动的状态,此模块可以模拟成一下5个状态,见state machine:

(2)循环n次计数消抖动

同样,此模块也是Bingo无数次修改测试最后成型的代码,利用了更少的资源,更适用于并行高速FPGA的性能要求。具体代码实现过程请有需要的自行分析,本模块通过相关时钟的适配,n次计数来确认按键信号,Verilog代码如下所示:

/*************************************************

* Module Name : key_scan.v

* Engineer : Crazy Bingo

* Target Device : EP2C8Q208C8

* Tool versions : Quartus II 11.0

* Create Date : 2011-6-25

* Revision : v1.0

* Description :  

**************************************************/

module key_scan

#(

parameter KEY_WIDTH = 2

)

(

input clk, //50MHz

input rst_n,

input [KEY_WIDTH-1:0] key_data,

output key_flag,

output reg [KEY_WIDTH-1:0] key_value

);

//---------------------------------

//escape the jitters

reg [19:0] key_cnt; //scan counter

reg [KEY_WIDTH-1:0] key_data_r;

always @(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

key_data_r <= {KEY_WIDTH{1'b1}};

key_cnt <= 0;

end

else

begin

key_data_r <= key_data; //lock the key value

if((key_data == key_data_r) && (key_data != {KEY_WIDTH{1'b1}})) //20ms escape jitter

begin

if(key_cnt < 20'hfffff)

key_cnt <= key_cnt + 1'b1;

end

else key_cnt <= 0;

end

end

wire cnt_flag = (key_cnt == 20'hffffe) ? 1'b1 : 1'b0;//!!

//-----------------------------------

//sure the key is pressed

reg key_flag_r;

always@(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

key_flag_r <= 0;

key_value <= 0;

end

else if(cnt_flag)

begin

key_flag_r <= 1;

key_value <= key_data; //locked the data

end

else //let go your hand

key_flag_r <= 0; //lock the key_value

end

//---------------------------------------

//Capture the rising endge of the key_flag

reg key_flag_r0,key_flag_r1;

always@(posedge clk or negedge rst_n)

begin

if(!rst_n)

begin

key_flag_r0 <= 0;

key_flag_r1 <= 0;

end

else

begin

key_flag_r0 <= key_flag_r;

key_flag_r1 <= key_flag_r0;

end

end

assign key_flag = ~key_flag_r1 & key_flag_r0;

endmodule

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭