当前位置:首页 > 单片机 > 单片机
[导读]在传统的控制系统中,人们常常采用单片机作为控制核心。但这种方法硬件连线复杂,可靠性差,且单片机的端口数目、内部定时器和中断源的个数都有限,在实际应用中往往需要外加扩展芯片。这无疑对系统的设计带来诸多不

在传统的控制系统中,人们常常采用单片机作为控制核心。但这种方法硬件连线复杂,可靠性差,且单片机的端口数目、内部定时器和中断源的个数都有限,在实际应用中往往需要外加扩展芯片。这无疑对系统的设计带来诸多不便。

现在有很多系统采用可编程逻辑器件CPLD作为控制核心。它与传统设计相比较,不仅简化了接口和控制,提高了系统的整体性能及工作可靠性,也为系统集成创造了条件。但可编程逻辑器件的D触发器资源非常有限,而且可编程逻辑器件在控制时序方面不如单片机那样方便,很多不熟悉的应用者往往感到应用起来非常的困难。利用可编程逻辑器件和单片机构成的双向通信控制器克服了两者的缺点,且把二者的长处最大限度地发挥出来。

1 CPLD与单片机AT89C51双向串行通信原理

1.1 单片机到可编程逻辑器件的串行通信

单片机到CPLD的串行通信接口电路是利用VHDL语言在CPLD中设计一个串行输入并行输出的八位移位寄存器,其端口与单片机的P1.4~P1.7相连,如图1所示。CS为单片机选信号,当其为低时使能八位寄存器;当DCLOCK信号的上升沿到达clk端口时,八位移位寄存器就会将单片机输出到cxin的一位数据移入;当单片机A寄存器中的八位数据欲传送给CPLD时,就在P1.6连续产生八次上升沿,单片机便顺次地将A中的数据移到cxin,八次后A中的数据段就会出现在CPLD的cxout中。

其VHDL源程序如下:

entity cuanxing is

port (clk,cxin,cs:in std_logic;

cxout:out std_logic_vector(7 downto 0));

end;

architecture rtl of cuanxing is

signal shift:std_logic_vector(7 downto 0) ;八位暂存变量并行输出

begin

process(clk)

begin

if(cs='0')then

shift<=(others=>'0');若未被选中,输出全零

elsif(clk'event and clk='1')then ;若上升沿到达clk时,被选中。

shift(7 downto 1)<=shift(6 downto 0) ;八位数据前移一位

shift(0)<=cxin;最低位由cxin输入

end if;

end process;

cxout<=shift;将八位变量送至端口

end rtl;

与之相对应的单片机控制子程序如下(待发数据存放在A中):

CS EQU P1.4

EN EQU P1.5

DCLOCK EQU P1.6

DOUT EQU P1.7

CONV:PUSH 07H

MOV R7,#8 ;将移位个数8存入R7

CLR DCLOCK

SETB CS ;选中移位寄存器

CLR EN

CLR C

JXL:RLC A ;左移一位,将待发数据送至CY

MOV DOUT,C ;送至端口

ACALL YS1MS

SETB DCLOCK ;给一个上升沿,将数据移入移位寄存器

ACALL YS1MS

CLR DCLOCK

DJNZ R7,JXL ;若未到8次则传送下一位

SETB EN ;八位命令字全部移入,给EN一个上升沿,使CPLD执行相应操作

ACALL YS1MS

POP 07H

RET

1.3 可编程逻辑器件到单片机的串行通信

可编程逻辑器件到单片机的串行通信与单片机到可编程逻辑器件的串行通信类似,只不过八位寄存器改为并入串出,其端口如图2所。当单片机的cs=1时,寄存器被选中;当load=1时,待发的数据被加载到bxin上;当clk上升沿到来时,将数据一位一位移出至bxout上,与此同时,单片机一位一位接收到自bxout上的数据。在clk八个上升沿后,加载到bxin的数据便被传送至单片机的A寄存器中(其VHDL和单片机源程序由于篇幅所限,不予给出)。

2 双控制系统的实现原理

由于单片机端口有限,所以大部分外围器件的连线靠CPLD来完成,而对时序控制要求较高的那些外围器件则靠单片机来间接控制。所谓间接控制就是指应用者可以自定义很多个命令字,每个命令字对应着CPLD一项或一系列操作。当单片机想让某外部器件实现某种功能时,可以通过串行通信把命令字传送给可编程逻辑器件CPLD。CPLD收到该命令字关判断命令字后,便在EN的上升沿到来后执行相应的操作。这里值得一提的是:命令字传送给CPLD后,只有在EN的上升到来后CPLD才能执行相应操作。这是为了防止命令字在字传送期间使CPLD误动作。

当外部器件有中断信号反馈到控制器时,也可将特定的命令字由CPLD传送给AT89C51,使AT89C51产生中断进行处理。但无论有多少个外围器件需产生中断控制。在AT89CF51中断子程序中,运行由CPLD向单片机的串行通信程序,将特定的命令字读到A寄存器中,从而可知是如个外围器件产生的中断(由应用者自行定义),进而可知需何种外部操作。

本双控制系统在项目设计中应用起来非常灵活方便,这里采用的是八位命令字,最多可自定义256个命令字。由于同时采用了单片机和CPLD,因此编程非常灵活方便,工程人员可根据自身特点而相应选择。例如,有些人的单片机编程能力要比CPLD语言编程略好一些,那他可在VHDL语言编程中把命令字对应的操作定义得简单一些(最简单的莫过于使某个管脚变为高电平或低电平);若是想简化单片机的编程,则可使高电平或低电平);若是想简化单片机的编程,则可使VHDL语言编程中特定命令字对应的操作复杂一些。

单片机的编程过程就是对A寄存器写不同命令字,然后调用串行通信子程序的过程。若是VHDL的命令字,然后调用串行通信子程序的过程。若是VHDL的命令字对应程序简单些,则要完成对某特定外围器件的操作所需要的命令字调用就会多一些。反之亦然,仅此而已。

总之,用单片机CPLD构成的双控制器,此用它们各自独立开发项目要容易得多。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭