当前位置:首页 > 单片机 > 单片机
[导读]一般常用的红外遥控器编码规则都差不多,基本上都同6221原理一样 PIC单片机接收时: 如果用54,57这类片子做的话有一定的难度(假如要做成实时控制的;比如说你还要驱动显示,驱动步进电机,在加上几个

一般常用的红外遥控编码规则都差不多,基本上都同6221原理一样

       PIC单片机接收时:

        如果用54,57这类片子做的话有一定的难度(假如要做成实时控制的;比如说你还要驱动显示,驱动步进电机,在加上几个按键)原因就是这类片子没有中断

       例程如下(用来解6221;分频比为256)

RF:
BTFSC PORTB,2;;B2口用做接收口
GOTO RF1
BTFSS DOWNBIT;;检测下降沿标制
CLRF RTCCOUNT
BSF DOWNBIT;制下降沿标制
BTFSS UPBIT;;检测上升沿标制
RETLW 0
BTFSC IDBIT;;检测码头标制
GOTO RF3
MOVLW 2AH
SUBWF RTCCOUNT,0
BTFSS STATUS,0
GOTO RF2
MOVLW 36H
SUBWF RTCCOUNT,0
BTFSC STATUS,0
GOTO RF2
BTFSC IDBIT
GOTO RF3
MOVLW .8
MOVWF LOOP
MOVLW .3
MOVWF LOOPCOUNT
CLRF DATACOUNT
BSF IDBIT
BSF DOWNBIT
BCF UPBIT
CLRF RTCCOUNT
RETLW 0
RF1:
BTFSS DOWNBIT
RETLW 0
BSF UPBIT
RETLW 0

RF2:
BCF DOWNBIT
BCF UPBIT
BCF IDBIT
CLRF RTCCOUNT
RETLW 0 ;遥控接收
RF3:
MOVLW 02H
SUBWF RTCCOUNT,0
BTFSS STATUS,0
GOTO RF4
MOVLW 0CH
SUBWF RTCCOUNT,0
BTFSS STATUS,0
GOTO RF4
GOTO RF2
RF4:
MOVLW 08H
SUBWF RTCCOUNT,0
BTFSC STATUS,0
BSF 3H,0
MOVLW 07H
SUBWF RTCCOUNT,0
BTFSS STATUS,0
BCF 3H,0
RLF DATACOUNT,1
BSF DOWNBIT
BCF UPBIT
CLRF RTCCOUNT
DECFSZ LOOP,1
RETLW 0
MOVLW .8
MOVWF LOOP
DECFSZ LOOPCOUNT
RETLW 0
BSF RFBIT;;制接收完标制
BCF DOWNBIT
BCF UPBIT
BCF IDBIT
CLRF RTCCOUNT
RETLW 0

//////////////////////////////////////////////////////////

TIME:
BTFSC TIMEPD1
GOTO TIME1
MOVF RTCC,0;;(
MOVWF TIMEONE
BSF TIMEPD1
RETLW 0 ;定时查寻
TIME1:
MOVF RTCC,0
SUBWF TIMEONE,0
BTFSC STATUS,2
RETLW 0

BCF TIMEPD1


INCF RTCCOUNT,1

RETLW 0

////////////////////////////////////////////////

        在这里我是用查询的方式来定时的(RTCCOUNT)只是在解码时不需要去追求时间精度;我是去查RTCC有没有发生跳变如有则表示时间过了 256US---RTCCOUNT加一;这样做有一个好处---你不必去管RTCC具体的值是多少,(RTCC去做精确的时钟定时;在这个查询的子程序中你可以去判断键扫,显示刷新,驱动步进电机等等)

       相应的C代码如下:

unsigned char rfcount,
loop,
rftime,//查询定时器
k;
bit rfbit, //接收完标制
lowbit1,
lowbit2,
downbit,
rfgobit;
unsigned char dispcount[5];//结果
#define rfin RC6
////////////////////////////////////////////////////////////////////////////////
rf( )//遥控接收
{
if(rfbit==0)
{
if((lowbit1==0)&&(rfin==0))
{
downbit=1;
rftime=0;
lowbit1=1;
return;
}
if((lowbit1==1)&&(rfin==1))
{
lowbit2=1;
return;
}
if((lowbit1==1)&&(lowbit2==1)&&(RC6==0))
{
lowbit1=0;
lowbit2=0;
if((rftime>=40)&&(downbit==1))//遥控接收;
{
rfgobit=1;
loop=0;
rfcount=0;
k=1;
rftime=0;
return;
}
rfcount=rfcount+1;
loop=loop+1;
if(rfcount>=31)
{
rfgobit=0;
downbit=0;
rfcount=0;
rfbit=1;
loop=0;
return;
}
if((rftime>=7)&&(rfgobit==1))
{
dispcount[k]=dispcount[k]|0x80;
rftime=0;
if(loop==8)
{
k=k+1;
loop=0;
return;
}
dispcount[k]=dispcount[k]>>1;
return;
}
if((rftime<5)&&(rfgobit==1))
{
dispcount[k]=dispcount[k]&0x7f;
rftime=0;
if(loop==8)
{
k=k+1;
loop=0;
return;
}
dispcount[k]=dispcount[k]>>1;
return;
}
}
}
}

      (查询子程序同汇编)
假如用中断的话也可用时间查询的方法,只是接收口改用带中断的口线;RB4--RB7,CCP1,CCP2,都可以。建议不要用RB0(他当按键输入最好用);

 

       还有就是解码时的容陷和误码处理(有一种写法是在解码移位时利用进位标制C同时移位;我个人认为不太好,因为只要差一位没接收到,整个接收到的都是误码且浪费时间) 

       原理是接收的逆过程

例程如下(用来发6221;分频比为256)

;///////////////////////////////////////////////////////////////////////////////////////////////
READDIGT:
MOVF SENDLOOP,0
ADDWF PC,1
GOTO SENDC4
GOTO SENDC3
GOTO SENDC2
GOTO SENDC1
GOTO SENDC0
;///////////////////////////////////
SENDC0:
MOVF C4COUNT,0;;读要发的数据(假设要发5个字)
RETURN
SENDC1:
MOVF C3COUNT,0
RETURN
SENDC2:
MOVF C2COUNT,0
RETURN
SENDC3:
MOVF C1COUNT,0
RETURN
SENDC4:
MOVF C0COUNT,0
RETURN
;///////////////////////////////////
SENDBIT:
CLRF TIME
BCF PORTB,1
SENDBIT1:
CLRWDT
MOVLW .35
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDBIT1
CLRF TIME
BSF PORTB,1
SENDBIT2:
CLRWDT
MOVLW .18
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDBIT2
CLRF SENDLOOP ;码头数据发送

//////////////////////////////////////////////
SENDBIT3:
CLRWDT
BCF INTCON,7
CALL READDIGT
MOVWF SENDCOUNT
BSF INTCON,7
CALL SENDDIGT
INCF SENDLOOP,1
MOVLW .5
SUBWF SENDLOOP,0
BTFSS STATUS,2
GOTO SENDBIT3
CLRF TIME
BCF PORTB,1
SENDDIGT5:
CLRWDT
MOVLW .2;;加发一个结束位
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDDIGT5
BSF PORTB,1
BSF STARTBIT
RETURN
;/////////////////////////////////////////////////////////////////////////////////////////
SENDDIGT:;;实现0和1的发送
MOVLW .8
MOVWF LOOPSENDCOUNT
SENDDIGTGO:
BTFSS SENDCOUNT,7
GOTO ZERSEND
CLRF TIME
SENDDIGT1:
CLRWDT
BCF PORTB,1
MOVLW .2
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDDIGT1
CLRF TIME
SENDDIGT2:
CLRWDT
BSF PORTB,1
MOVLW .6
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDDIGT2
GOTO SENDOVER
ZERSEND:
CLRF TIME
SENDDIGT3:
CLRWDT
BCF PORTB,1
MOVLW .2
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDDIGT3
CLRF TIME
SENDDIGT4:
CLRWDT
BSF PORTB,1
MOVLW .2
SUBWF TIME,0
BTFSS STATUS,2
GOTO SENDDIGT4
SENDOVER:
RLF SENDCOUNT,1
DECFSZ LOOPSENDCOUNT
GOTO SENDDIGTGO
RETURN

相应的C代码如下:(C5口是发送口)

#include
#include
#include
unsigned char dispcount[5];//要发送的码值
unsigned char i,k,data,rfbit,zbit,rfgobit;
#pragma interrupt_level 1
interrupt adint(void)
{
if(TMR1IF==1)
{
TMR1IF=0;
TMR1H=0b11111100;
TMR1L=0b00010111;
rfbit=rfbit+1;//发送指针加一
send( );
}
}
//////////////////////////////////////////
send( )
{
if(rfgobit==0)
{
switch(rfbit)
{
case 1 :
RC5=0;
break;
case 6 :
RC5=1;
break;
case 7 :
RC5=0;
rfgobit=1;//制发送完标制
rfbit=0;
break;
default :
break;
}
}
if(rfgobit==1)
{
zbit=dispcount[i]&0b00000001;
switch(rfbit)
{
case 1:
RC5=1;
break;
case 2 :
if(zbit==0)
{
RC5=0;
rfbit=0;
rf( );
}
break;
case 3 :
if(zbit==1)
{
RC5=0;
rfbit=0;
rf( );
}
break;
default :
break;
}
}
}
//////////////////////////////////////////////
rf( )
{
k=k+1;
if(k==8)
{
i=i+1;
k=0;
if(i==6)
{
i=1;
rfgobit=0;
TMR1H=0;
TMR1L=0;
RC5=1;
dispcount[1]=0xaa;
dispcount[2]=0xbb;
dispcount[3]=0xcc;
dispcount[4]=0xdd;
dispcount[5]=0xee;
}
return;
}
dispcount[i]=dispcount[i]>>1;
}
//////////////////////////////////////
main( )
{
di( );
TRISC=0b11011111;
TRISA=0b111111;
TRISB=0b11111111;
i=1;
k=0;
TMR1H=0b11111100;
TMR1L=0b00010111;
T1CON=1;
TMR1IE=1;
RC5=1;
PEIE=1;
ei( );
dispcount[1]=0xaa;
dispcount[2]=0xbb;
dispcount[3]=0xcc;
dispcount[4]=0xdd;
dispcount[5]=0xee;
while( 1 )
{
;
}
}
这两个程序只是一个演示例程

 

       在实际运用中可变通的把这种发送与接受用于两机之间的通讯(好处是移植性好,抗干扰好且一发一收只要两根线或一根线)另外如要产生载波(38KHZ)的话可用其输出口去调制38KHZ发生源(比如555电路,PWM)来得到,或干脆用软件来实现(不过难度较大;不如用带38KHZ的单片机来做)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭