当前位置:首页 > 单片机 > 单片机
[导读] Stm32时钟分析该分析材料大部分来自opendev论坛,我所做的只不过是加上一些自己的分析和整理,由于个人能力有限,纰漏之处在所难免,欢迎指正。一、硬件上的连接问题如果使用内部RC振荡器而不使用外部晶

 

Stm32时钟分析

该分析材料大部分来自opendev论坛,我所做的只不过是加上一些自己的分析和整理,由于个人能力有限,纰漏之处在所难免,欢迎指正。

一、硬件上的连接问题

 

如果使用内部RC振荡器而不使用外部晶振,请按照如下方法处理:

1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
i)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
ii)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面i)节省2个外部电阻。

 

对上图的分析如下:

重要的时钟:
PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2之间的关系要弄清楚;
1、HSI:高速内部时钟信号stm32单片机内带的时钟(8M频率)精度较差
2、HSE:高速外部时钟信号精度高来源(1)HSE外部晶体/陶瓷谐振器(晶振) (2)HSE用户外部时钟
3、LSE:低速外部晶体32.768kHz主要提供一个精确的时钟源一般作为RTC时钟使用
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。
⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。
涉及的寄存器:
RCC寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct
{
vu32 CR; //HSI,HSE,CSS,PLL等的使能
vu32 CFGR; //PLL等的时钟源选择以及分频系数设定
vu32 CIR; //清除/使能时钟就绪中断
vu32 APB2RSTR; //APB2线上外设复位寄存器
vu32 APB1RSTR; //APB1线上外设复位寄存器
vu32 AHBENR; //DMA,SDIO等时钟使能
vu32 APB2ENR; //APB2线上外设时钟使能
vu32 APB1ENR; //APB1线上外设时钟使能
vu32 BDCR; //备份域控制寄存器
vu32 CSR;
} RCC_TypeDef;
这些寄存器的具体定义和使用方式参见芯片手册,因为C语言的开发可以不和他们直接打交道,当然如果能够加以理解和记忆,无疑是百利而无一害。
如果外接晶振为8Mhz,最高工作频率为72Mhz,显然需要用PLL倍频9倍,这些设置都需要在初始化阶段完成。为了方便说明,以例程的RCC设置函数,并用中文注释的形式加以说明:


static void RCC_Config(void)
{


RCC_DeInit();


RCC_HSEConfig(RCC_HSE_ON);


HSEStartUpStatus = RCC_WaitForHSEStartUp();

if (HSEStartUpStatus == SUCCESS)
{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);


FLASH_SetLatency(FLASH_Latency_2);


RCC_HCLKConfig(RCC_SYSCLK_Div1);


RCC_PCLK2Config(RCC_HCLK_Div1);


RCC_PCLK1Config(RCC_HCLK_Div2);


RCC_ADCCLKConfig(RCC_PCLK2_Div6);


//上面这句例程中缺失了,但却很关键

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);


RCC_PLLCmd(ENABLE);



while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{}


RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);


while (RCC_GetSYSCLKSource() != 0x08)
{}
}

//使能外围接口总线时钟,注意各外设的隶属情况,不同芯片的分配不同,到时候查手册就可以
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
RCC_APB2Periph_AFIO, ENABLE);
}
由上述程序可以看出系统时钟的设定是比较复杂的,外设越多,需要考虑的因素就越多。同时这种设定也是有规律可循的,设定参数也是有顺序规范的,这是应用中应当注意的,例如PLL的设定需要在使能之前,一旦PLL使能后参数不可更改。
经过此番设置后,对于外置8Mhz晶振的情况下,系统时钟为72Mhz,高速总线和低速总线2都为72Mhz,低速总线1为36Mhz,ADC时钟为12Mhz,USB时钟经过1.5分频设置就可以实现48Mhz的数据传输。
一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。然后考虑内部总线和外部总线,最后考虑外设的时钟信号。遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则。

 

 

时钟控制寄存器(RCC_CR)

 

31~26

25

24

23~20

19

18

17

16

保留

PLLRDY

PLLON

保留

CSSON

HSEBYP

HSERDY

HSEON

 

eg:RCC->

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

自由现金流同比增长约 3 倍

关键字: 电源 安森美

Powerbox(PRBX)是欧洲最大的电源公司之一,四十年来在针对高要求应用提供最优电源解决方案方面一直处于领先地位。公司宣布推出一款新型加固型ECD1000A电源,该电源适用于地面防务应用和恶劣的工业环境。ECD10...

关键字: 电源 配电系统

利用LogiCoA™微控制器,以更低功耗实现与全数字控制电源同等的功能

关键字: 微控制器 电源 CPU

甲类电源是一种开关式电源,它通过快速开关来控制电压,使输出电压保持恒定。甲类电源的输出电流波形接近直流,能够提供高效率和高功率输出。

关键字: 甲类电源 线性电源 电源

复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态

关键字: 复位电路 电容 电源

TDK株式会社(东京证券交易所代码:6762)新近推出了爱普科斯 (EPCOS) B43659系列焊片式铝电解电容器。新系列元件是一款结构更紧凑的新一代通用型产品,工作电压为450 V(直流),具有更高的CV值,功能及适...

关键字: 电容器 光伏逆变器 电源

开关电源作为电子设备中的核心部件,负责将交流电转换为稳定的直流电,为设备的正常运行提供可靠的电力保障。然而,随着使用时间的增长和外部环境的变化,开关电源也可能出现故障,影响其正常工作。本文将重点介绍开关电源的常见故障及其...

关键字: 开关电源 电源 电子设备

开关电源作为电子设备中的关键部件,其稳定性和可靠性对于设备的正常运行至关重要。然而,在使用过程中,开关电源有时也会出现故障,需要进行维修。本文将为您详细介绍开关电源的维修步骤,帮助您快速解决电源问题,恢复设备的正常使用。

关键字: 开关电源 电源 电子设备

随着科技的飞速发展,电子设备已经渗透到我们生活的方方面面,从智能手机、电脑到家用电器,无一不需要稳定的电力供应。而在这背后,开关电源作为电力转换和管理的关键部件,正发挥着至关重要的作用。本文将深入探讨开关电源在现代科技中...

关键字: 开关电源 电源

在现代电子技术的飞速发展中,电源滤波器的应用变得日益广泛。作为电子设备中的关键组件,电源滤波器在抑制电磁干扰、提高设备性能、增强设备可靠性以及保护设备安全等方面发挥着至关重要的作用。那么,电源为什么要滤波呢?本文将从科技...

关键字: 电源 滤波器
关闭
关闭