当前位置:首页 > 单片机 > 单片机
[导读] #include sfr ADC_CONTR=0xC5;/*A/D转换寄存器*/sfr ADC_DATA=0xC6;/*A/D 转换结果寄存器, 为10 位 A/D 转换结果的高8 位*/sfr ADC_LOW2=0x0BE;/*A/D 转换结果寄存器, 低2 位有效, 为10 位 A/D 转换结果

#include
sfr ADC_CONTR=0xC5;/*A/D转换寄存器*/
sfr ADC_DATA=0xC6;/*A/D 转换结果寄存器, 为10 位 A/D 转换结果的高8 位*/
sfr ADC_LOW2=0x0BE;/*A/D 转换结果寄存器, 低2 位有效, 为10 位 A/D 转换结果的低2 位*/

sfr P1M0=0x91;//P1 口模式选择寄存器0
sfr P1M1=0x92;//P1 口模式选择寄存器1
#define ADCPowerChannel_7 0xE7;/*P1.7 作为A/D 输入11100111B*/

unsigned char ADC_Channel_7_Result;/*7 通道A/D 转换结果*/
unsigned char ADC_Channel_72_Result;/*通道A/D 转换结果低2位*/


unsigned char dis_0 ; // 个位值
unsigned char dis_1 ; // 十位值
unsigned char dis_2 ; // 百位值
unsigned char dis_3; // 千位值
unsigned char dis_4; // 万位值

unsigned code dis_code1[10] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //段码表 0 1 2 3 4 5 6 7 8 9
unsigned code dis_code[10]={ 0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

void Delay(unsigned i) //;延时子程序
{
unsigned a,b;
for(a=i;a>0;a--)
for(b=248;b>0;b--);
}
void ADC_Power_On(void) //开ADC电源, 第一次使用时要打开内部模拟电源开ADC 电源
{ ADC_CONTR=ADC_CONTR|0x80;
Delay(20);
}

void Set_P17_Open_Drain() //设置P1.7,设置A/D 通道所在的I/O 为开漏模式
{
P1M0=0x80;//#10000000B
P1M1=0x80;
}

void Set_ADC_Channel_7() // 设P1.7 作为A/D 转换通道
{
ADC_CONTR=ADCPowerChannel_7;
Delay(10);
}

void Set_P12_Normal_IO() //设置 P1.7 为普通IO
{
P1M0=0x7F;//01111111B
P1M1=0x7F;
}

void Get_AD_Result() //;AD转换
{ unsigned i="1";
ADC_CONTR=ADC_CONTR|0x08;//启动 AD 转换00001000B
do{;}
while((ADC_CONTR&0x10)==0);// 判断 AD 转换是否完成00010000B
ADC_CONTR=ADC_CONTR&0xE7; //清0 ADC_FLAG, ADC_START 位, 停止A/D 转换
ADC_Channel_7_Result=ADC_DATA;//保存 AD 转换结果高8位
ADC_Channel_72_Result=ADC_LOW2;//保存 AD 转换结果低2位

}

void Deal_AD_Result() //10位高8与低2存储调整结果存入dis_0-dis_4变量
{
unsigned char q;
unsigned int P; //调整结果存入dis_0-dis_4变量
q=ADC_Channel_7_Result; //10位高8与低2存储调整
ADC_Channel_7_Result=ADC_Channel_7_Result<<2;

ADC_Channel_72_Result=ADC_Channel_72_Result&0x03;
ADC_Channel_72_Result=ADC_Channel_72_Result|ADC_Channel_7_Result;
ADC_Channel_7_Result=q>>6;

P=ADC_Channel_7_Result*256+ADC_Channel_72_Result;
dis_4=P/10000;//存入dis_0-dis_4变量
dis_3=(P-dis_4*10000)/1000;
dis_2=(P-dis_4*10000-dis_3*1000)/100;
dis_1=(P-dis_4*10000-dis_3*1000-dis_2*100)/10;
dis_0=P-dis_4*10000-dis_3*1000-dis_2*100-dis_1*10;
}


void DisPlay()
{
P1=0xFF;
P1 = dis_code[dis_0]; // 取个位的段码
P3 = 0x01; // 开个位显示(P2.7口控制个位数码管)
Delay(4); // 延时1ms使四位数码管动态显示时能看清
P1=0x80;

P1 = dis_code[dis_1]; // 取十位的段码
P3 = 0x02; // 开十位显示(P2.6口控制十位数码管)
Delay(4); // 延时1ms作用同上
P1=0x80;

P1 = dis_code[dis_2]; // 取百位的段码
P3 = 0x04; // 开百位显示(P2.5口控制十位数码管)
Delay(4); // 延时1ms作用同上
P1=0x80;

P1 = dis_code[dis_3]; // 取千位的段码
P3 = 0x08; // 开千位显示(P2.4口控制十位数码管)
Delay(4); // 延时1ms作用同上
P1=0x80;

P1 = dis_code[dis_4]; // 取千位的段码
P3 = 0x10; // 开千位显示(P2.4口控制十位数码管)
Delay(4); // 延时1ms作用同上
P1=0x80;
}

void int_0() interrupt 0 // 外部中断0中断服务程序
{
EA="0";//关中断总开关
P1=0xFF;
ADC_Power_On();//开ADC 电源, 第一次使用时要打开内部模拟电源开ADC 电源, 可适当加延时,1mS 以内就足够了
set_P17_Open_Drain();//设置 P1.7为开漏/实际上开
Set_ADC_Channel_7(); //;设置 P1.7 作为A/D 转换通道
while(1)
{
Get_AD_Result();//测量电压并且取A/D 转换结果

//ADC_Channel_7_Result=0x02;
//ADC_Channel_72_Result=0x01;

Deal_AD_Result() ;//10位高8与低2存储调整结果存入dis_0-dis_4变量
DisPlay();//显示到复位
}
}


void int_1() interrupt 2 // 外部中断1中断服务程序
{

/*EA=0;//关中断总开关
P1=0xFF;
ADC_Power_On();//开ADC 电源, 第一次使用时要打开内部模拟电源开ADC 电源, 可适当加延时,1mS 以内就足够了
set_P17_Open_Drain();//设置 P1.7为开漏/实际上开
Set_ADC_Channel_7(); //;设置 P1.7 作为A/D 转换通道
while(1)
{
Get_AD_Result();//测量电压并且取A/D 转换结果

//ADC_Channel_7_Result=0x02;
//ADC_Channel_72_Result=0x01;

Deal_AD_Result() ;//10位高8与低2存储调整结果存入dis_0-dis_4变量
DisPlay();//显示到复位
}
*/
unsigned char p,q;
EA="0";//关中断总开关
P1=0xFF;
ADC_Power_On();//开ADC 电源, 第一次使用时要打开内部模拟电源开ADC 电源, 可适当加延时,1mS 以内就足够了
set_P17_Open_Drain();//设置 P1.7为开漏/实际上开
Set_ADC_Channel_7(); //;设置 P1.7 作为A/D 转换通道
Get_AD_Result();//测量电压并且取A/D 转换结果
p=ADC_Channel_7_Result;//比较本次与前次的AD转换值,小于则退出AD转换
q=ADC_Channel_72_Result;
do {p=ADC_Channel_7_Result;
q=ADC_Channel_72_Result;
Get_AD_Result();
}
while((p>ADC_Channel_7_Result)||((p==ADC_Channel_7_Result)&&(q>ADC_Channel_72_Result)));
Set_P12_Normal_IO();//设置 P1.7 为普通IO
Deal_AD_Result() ;//10位高8与低2存储调整结果存入dis_0-dis_4变量
while(1)
{
DisPlay();//显示到复位
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭