当前位置:首页 > 单片机 > 单片机
[导读] 我在这里,将我在学习这篇文章时遇到的疑问及理解和大家分享一下 LPC2300.S文件中的相关软中断代码如下: EXPORT SWI_Handler extern EnableIrqFunc ;使能中断函数名,用C语言实现 extern DisableI

我在这里,将我在学习这篇文章时遇到的疑问及理解和大家分享一下 LPC2300.S文件中的相关软中断代码如下:

EXPORT SWI_Handler
extern EnableIrqFunc ;使能中断函数名,用C语言实现
extern DisableIrqFunc ;禁止中断函数名,用C语言实现
SWI_Handler
STMFD SP!, {R0,R12,LR} ;入栈
LDR R0, [LR,#-4] ;取指令
BIC R0,R0,#0xFF000000 ;取软件中断命令号
CMP R0,#0 ;和0比较,因为我的使能中断用了软件中断命令0,禁止中断使用了软件中断命令1
BLEQ EnableIrqFunc ;为零调用使能中断函数
BLNE DisableIrqFunc ;不为零调用禁止中断函数
LDMFD SP!,{R0,R12,PC} ;出栈 我的疑问主要在:STMFD SP!, {R0,R12,LR} ;入栈
LDR R0, [LR,#-4] ;取指令 入栈的过程怎样,他是如何入栈的?为什么LDR R0, [LR,#-4] 表示的是取指令? 入栈的过程:ARM规定,sp始终是指向栈顶位置的,STM指令把寄存器列表中索引最小的寄存器存在最低地址,所以R0在最低地址,向上依次是R0,R1,R2,...R12,LR。完成后SP指向保存R0的地址。


详解:对于大多数的设计来说都是把栈底设置在高地址,栈顶设置在低地址,即是说上面所说的首先要SP=SP-14×4,这里理解了之后就好理解了,那么执行这条指令后,栈中的数据顺序从栈底到栈顶为LR ,R12,R6,R5,R4,R3,R2,R1,R0,此时SP-->R0,即栈顶,这和堆栈的定义没有冲突,如果SP指向的是LR的话栈就没有用了哦,其实这里STMFD有两种方法处理的:(STMFD的用法详见上一篇博文)第一种先计算总共压入的数据个数,直接一次更改指针SP=SP-4*(number)并从低地址向高地址存入数据第二种就是每压入一次就把SP=SP-1*4,同时一个一个的把数据从高地址向低地址压入注意点:R0、R1....LR等寄存器是没有地址的,它们只有保存在里面的数据,所以如上图中:LR对应基址-4是将LR里面的值放入基址减4中,这里的减4与LDR R0, [LR,#-4]的减4不是同一个概念。那么LDR R0, [LR,#-4]为什么解释为取指令呢?将存储器地址为(LR-4)的字数据读入寄存器R0。 这里你必须对ARM7的3级流水线过程做一个了解: PC 代表程序计数器,流水线使用三个阶段,因此指令分为三个阶段执行:1.取指(从存储器装载一条指令);2.译码(识别将要被执行的指令);3.执行(处理 指令并将结果写回寄存器)。 而R15(PC)总是指向“正在取指”的指令,而不是指向“正在执行”的指令或正在“译码”的指令。一般来说,人们习惯性约定 将“正在执行的指令作为参考点”,称之为当前第一条指令,因此PC总是指向第三条指令。当ARM状态时,每条指令为4字节长,所以PC始终指向该指令地址 加8字节的地址,即:PC值=当前程序执行位置+8;

ARM指令是三级流水线,取指,译指,执行时同时执行的,现在PC指向的是正在取指的地址,那么cpu正在译指的指令地址是PC-4(假设在ARM状态 下,一个指令占4个字节),cpu正在执行的指令地址是PC-8,也就是说PC所指向的地址和现在所执行的指令地址相差8。

在ARM体系结构中LR的特殊用途有两种:一是用来保存子程序返回地址;二是当异常发生时,LR中保存的值等于异常发生时PC的值减4(或者减2,对于ARM指令是减4,对于Thumb指令是减2),因此在各种异常模式下可以根据LR的值返回到异常发生前的相应位置继续执行。 
在异常发生时,LR保存的是PC-4,而执行指令是PC-8,所以LDR R0, [LR,#-4]解释为取指令!


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭