当前位置:首页 > 单片机 > 单片机
[导读]  设计思想  由Bootloader负责检测SD卡中是否有固件更新所需的BIN文件。如果检测到所需要的BIN文件,则开始复制文件更新固件。更新结束后跳转到指定的地址开始执行最新的程序。可以在论坛的ARM版块找到liklon的帖

  设计思想

  由Bootloader负责检测SD卡中是否有固件更新所需的BIN文件。如果检测到所需要的BIN文件,则开始复制文件更新固件。更新结束后跳转到指定的地址开始执行最新的程序。可以在论坛的ARM版块找到liklon的帖子:两份简单的 Bootloader 程序。链接为:http://forum.eepw.com.cn/thread/238997/1帖子里已经共享了两份简单的STM32Bootloader程序,一份是利用znFAT进行SD卡上文件操作,第二份是利用FATFS进行文件操作。

  知识要点

  STM32内部FLASH的起始地址为0X08000000,Bootloader程序文件就从此地址开始写入,存放APP程序的首地址设置在紧跟Bootloader之后。当程序开始执行时,首先运行的是Bootloader程序,此时Bootloader检测SD卡中的BIN文件并将其复制到APP区域使固件得以更新,固件更新结束后还需要跳转到APP程序开始执行新的程序,完成这最后这一步要了解Cortex-M3的中断向量表:

  程序启动后,将首先从“中断向量表”取出复位中断向量执行复位中断程序完成启动,当复位中断程序运行完成后才跳转到main函数。由此可见,在最后一步的设计中需要根据存放APP程序的起始地址以及中断向量表来设置栈顶地址,并获取复位中断地址跳转到复位中断程序。接下来开始分析程序设计步骤。

  Bootloader程序设计

  1.确定存放APP程序的首地址

  #define FLASH_APP_ADDR 0x08010000 //应用程序起始地址(存放在FLASH)上一句代码中是0X08010000可以看出,留给Bootloader程序的存储空间大小为64K。存放APP程序的起始地址为0X08010000。

  2.Bootloader检测是否有BIN文件

  gCheckFat = f_open(&FP_Struct,"/APP/LIKLON.BIN",FA_READ);//判读gCheckFat确定上面的代码是检测是否存在liklon.bin这个文件存在,其中liklon.bin文件就是固件升级所需要的BIN文件。

  3.复制文件到指定地址

  上一步中如果gCheckFat为0则表示存在所需BIN文件,则可以执行这一步。f_read (&FP_Struct,ReadAppBuffer,512,(UINT *)&ReadNum); //读取512个字节将512个字节转换为256个16位的数据存放在ChangeBuffer数组中,准备写入FLASH。FlashWrite(FLASH_APP_ADDR + i * 512,ChangeBuffer,256); //向指定地址写入读出数据向APP程序区写入512个字节的数据。按照这样读取写入,就可以完成对APP程序区的更新。

4.跳转到新程序运行

  更新完程序后就需要跳转到新程序开始运行,具体实现看下面代码:

本文引用地址:http://www.eepw.com.cn/article/174370.htm

  typedef void (*iapfun)(void); //定义一个函数类型的参数
  iapfun jump2app;
  __asm void MSR_MSP(u32 addr) //设置堆栈指针
  {
  MSR MSP, r0
  BX r14
  }
  //跳转到应用程序段
  //appxaddr:用户代码起始地址.
  void iap_load_app(u32 appxaddr)
  {
  if(((*(vu32*)appxaddr)&0x2FFE0000)==0x20000000) //检查栈顶地址是否合法.
  {
  jump2app = (iapfun)*(vu32*)(appxaddr+4);//用户代码区第二个字为程序开始地址(复位地址),此处查看中断向量表可知
  MSR_MSP(*(vu32*)appxaddr);//初始化APP堆栈指针(用户代码区的第一个字用于存放栈顶地址)
  jump2app(); //跳转到APP,执行复位中断程序
  }
  }

  APP程序设计注意

  1.编译软件需要做出设置:

  在Bootloader程序中已经指定了APP程序存储的起始地址为0x08010000,所以在APP程序设计时需要将编译软件这里做出设置,修改起始地址和大小。

  2.修改system_stm32f10x.c文件

  同样是针对于APP的起始地址改变而修改这里的偏移量,如上图所示。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭