当前位置:首页 > 单片机 > 单片机
[导读]本文采用第3种方式.在波特率576000下大数据包冲击证明可行.源代码://串口接收DMA缓存#define UART_RX_LEN 128extern uint8_t Uart_Rx[UART_RX_LEN];//串口接收DMA缓存uint8_t Uart_Rx[UART_RX_LEN] = {0};//--------

本文采用第3种方式.在波特率576000下大数据包冲击证明可行.

源代码:
//串口接收DMA缓存
#define UART_RX_LEN 128
extern uint8_t Uart_Rx[UART_RX_LEN];

//串口接收DMA缓存
uint8_t Uart_Rx[UART_RX_LEN] = {0};

//---------------------串口功能配置---------------------
//打开串口对应的外设时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 , ENABLE);
//串口发DMA配置
//启动DMA时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
//DMA发送中断设置
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//DMA1通道4配置
DMA_DeInit(DMA1_Channel4);
//外设地址
DMA_InitStructure.DMA_PeripheralBaseAddr =(u32)(&USART1->DR);
//内存地址
DMA_InitStructure.DMA_MemoryBaseAddr =(uint32_t)Uart_Send_Buffer;
//dma传输方向单向
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
//设置DMA在传输时缓冲区的长度
DMA_InitStructure.DMA_BufferSize = 100;
//设置DMA的外设递增模式,一个外设
DMA_InitStructure.DMA_PeripheralInc =DMA_PeripheralInc_Disable;
//设置DMA的内存递增模式
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
//外设数据字长
DMA_InitStructure.DMA_PeripheralDataSize =DMA_PeripheralDataSize_Byte;
//内存数据字长
DMA_InitStructure.DMA_MemoryDataSize =DMA_PeripheralDataSize_Byte;
//设置DMA的传输模式
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
//设置DMA的优先级别
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
//设置DMA的2个memory中的变量互相访问
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC,ENABLE);

//使能通道4
//DMA_Cmd(DMA1_Channel4, ENABLE);

//串口收DMA配置
//启动DMA时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
//DMA1通道5配置
DMA_DeInit(DMA1_Channel5);
//外设地址
DMA_InitStructure.DMA_PeripheralBaseAddr =(u32)(&USART1->DR);
//内存地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Uart_Rx;
//dma传输方向单向
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
//设置DMA在传输时缓冲区的长度
DMA_InitStructure.DMA_BufferSize = UART_RX_LEN;
//设置DMA的外设递增模式,一个外设
DMA_InitStructure.DMA_PeripheralInc =DMA_PeripheralInc_Disable;
//设置DMA的内存递增模式
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
//外设数据字长
DMA_InitStructure.DMA_PeripheralDataSize =DMA_PeripheralDataSize_Byte;
//内存数据字长
DMA_InitStructure.DMA_MemoryDataSize =DMA_MemoryDataSize_Byte;
//设置DMA的传输模式
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
//设置DMA的优先级别
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
//设置DMA的2个memory中的变量互相访问
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);

//使能通道5
DMA_Cmd(DMA1_Channel5,ENABLE);


//初始化参数
//USART_InitStructure.USART_BaudRate =DEFAULT_BAUD;
USART_InitStructure.USART_WordLength =USART_WordLength_8b;
USART_InitStructure.USART_StopBits =USART_StopBits_1;
USART_InitStructure.USART_Parity =USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl =USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx |USART_Mode_Tx;
USART_InitStructure.USART_BaudRate = DEFAULT_BAUD;
//初始化串口
USART_Init(USART1,&USART_InitStructure);
//TXE发送中断,TC传输完成中断,RXNE接收中断,PE奇偶错误中断,可以是多个
//USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);

//中断配置
USART_ITConfig(USART1,USART_IT_TC,DISABLE);
USART_ITConfig(USART1,USART_IT_RXNE,DISABLE);
USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);

//配置UART1中断
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3);
NVIC_InitStructure.NVIC_IRQChannel =USART1_IRQn;//通道设置为串口1中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =2;//中断占先等级0
NVIC_InitStructure.NVIC_IRQChannelSubPriority =1;//中断响应优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd =ENABLE;//打开中断
NVIC_Init(&NVIC_InitStructure);

//采用DMA方式发送
USART_DMACmd(USART1,USART_DMAReq_Tx,ENABLE);
//采用DMA方式接收
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE);
//启动串口
USART_Cmd(USART1, ENABLE);

//串口1接收中断
void USART1_IRQHandler(void)
{
uint32_t temp = 0;
uint16_t i = 0;

if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)
{
//USART_ClearFlag(USART1,USART_IT_IDLE);
temp = USART1->SR;
temp = USART1->DR; //清USART_IT_IDLE标志
DMA_Cmd(DMA1_Channel5,DISABLE);

temp = UART_RX_LEN - DMA_GetCurrDataCounter(DMA1_Channel5);
for (i = 0;i < temp;i )
{
Data_Receive_Usart = Uart_Rx[i];
//启动串口状态机
usart_state_run();
}

//设置传输数据长度
DMA_SetCurrDataCounter(DMA1_Channel5,UART_RX_LEN);
//打开DMA
DMA_Cmd(DMA1_Channel5,ENABLE);
}

__nop();
}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭