当前位置:首页 > 单片机 > 单片机
[导读]STM32F10xxx支持三种复位形式,分别为系统复位、上电复位和备份区域复位。一、系统复位除了时钟控制器的RCC_CSR寄存器中的复位标志位和备份区域中的寄存器(见图4)以外,系统复位将复位所有寄存器至它们的复位状态。当

STM32F10xxx支持三种复位形式,分别为系统复位、上电复位和备份区域复位。

一、系统复位

除了时钟控制器的RCC_CSR寄存器中的复位标志位和备份区域中的寄存器(见图4)以外,系统
复位将复位所有寄存器至它们的复位状态。
当发生以下任一事件时,产生一个系统复位:
1. NRST引脚上的低电平(外部复位)
2. 窗口看门狗计数终止(WWDG复位)
3. 独立看门狗计数终止(IWDG复位)
4. 软件复位(SW复位)
5. 低功耗管理复位
可通过查看RCC_CSR控制状态寄存器中的复位状态标志位识别复位事件来源。

软件复位
通过将Cortex?-M3中断应用和复位控制寄存器中的SYSRESETREQ位置’1’,可实现软件复位。请参考Cortex?-M3技术参考手册获得进一步信息。
低功耗管理复位
在以下两种情况下可产生低功耗管理复位:
1. 在进入待机模式时产生低功耗管理复位:
通过将用户选择字节中的nRST_STDBY位置’1’将使能该复位。这时,即使执行了进入待机模式的过程,系统将被复位而不是进入待机模式。
2. 在进入停止模式时产生低功耗管理复位:
通过将用户选择字节中的nRST_STOP位置’1’将使能该复位。这时,即使执行了进入停机模式的过程,系统将被复位而不是进入停机模式。

关于用户选择字节的进一步信息,请参考STM32F10xxx闪存编程手册。

二、电源复位

当以下事件中之一发生时,产生电源复位:
1. 上电/掉电复位(POR/PDR复位)
2. 从待机模式中返回

电源复位将复位除了备份区域外的所有寄存器。(见图1)

图中复位源将最终作用于RESET引脚,并在复位过程中保持低电平。复位入口矢量被固定在地址0x0000_0004。更多细节,参阅图2:其它STM32F10xxx产品(小容量、中容量和大容量)的向量表。

芯片内部的复位信号会在NRST引脚上输出,脉冲发生器保证每一个(外部或内部)复位源都能有至少20μs的脉冲延时;当NRST引脚被拉低产生外部复位时,它将产生复位脉冲。

复位电路

备份域复位

备份区域拥有两个专门的复位,它们只影响备份区域(见图1)。
当以下事件中之一发生时,产生备份区域复位。
1. 软件复位,备份区域复位可由设置备份域控制寄存器(RCC_BDCR)中的BDRST位产生。

备份域控制寄存器(RCC_BDCR)
偏移地址:0x20
复位值:0x0000 0000,只能由备份域复位有效复位
访问:0到3等待周期,字、半字和字节访问
当连续对该寄存器进行访问时,将插入等待状态。
注意: 备份域控制寄存器中(RCC_BDCR)的LSEON、LSEBYP、RTCSEL和RTCEN位处于备份域。因此,这些位在复位后处于写保护状态,只有在电源控制寄存(PWR_CR)中的DBP位置’1’后才能对这些位进行改动。进一步信息请参考5.1节。这些位只能由备份域复位清除(见6.1.3节)。任何内部或外部复位都不会影响这些位。


2. 在VDD和VBAT两者掉电的前提下,VDD或VBAT上电将引发备份区域复位。


图1





图2


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭