当前位置:首页 > 单片机 > 单片机
[导读]LPC2131 UART [查询方式] 操作流程: 初始化波特率、线控制寄存器 -》 查询线状态寄存器 -》 读数据-》 处理错误状态 -》 发送数据LPC2131 UART 初始化操作流程1.设置uart线控制寄存器 U0LCR 置位 bit7 为 1 使能写U

LPC2131 UART [查询方式] 操作流程: 初始化波特率、线控制寄存器 -》 查询线状态寄存器 -》 读数据
-》 处理错误状态 -》 发送数据


LPC2131 UART 初始化操作流程

1.设置uart线控制寄存器 U0LCR 置位 bit7 为 1 使能写U0DLM U0DLL寄存器

2.设置波特率 波特率寄存器值应为 Fpclk / (16*baud) 高8位写入 U0DLM 低8位写入U0DLL

3.设置uart线控制寄存器 U0LCR 置位 bit7 为 0 禁止写U0DLM U0DLL 使能写U0RBR其余位

4.设置uart线控制寄存器 U0LCR 设置字符长,停止位,奇偶校验

U0LCR 说明

1:0 字长度选择 00:5位 01:6位 10:7位 11:8位
2 停止位
3 奇偶使能
5:4 奇偶选择 00:奇校验 01:偶校验
6 间隔控制
7 除数锁存访问 0:禁止访问除数锁存 1:使能访问除数锁存

初始化完成后可进行发送字符,接收字符操作

通过读uart线状态寄存器 U0LSR 可获得uart发送接收的状态

U0LSR 说明

0 接收数据就绪
1 溢出错误
2 奇偶校验错误
3 真错误
4 间隔错误
5 发送保持寄存器空
6 发送器空
7 FIFO错误

读写uart发送保持,接受缓存寄存器可发送接收数据
其中U0RBR 是UART Rx FIFO的最高字节,包含最早收到的字符,可通过总线接口读出,如果接收到的字符小于8位,未使用的MSB填充为0

通过设置FIFO控制寄存器 U0FCR 设置FIFO,可设置接收缓存FIFO的字符数,如满8个字符发出中断请求


LPC2131 UART [中断方式]

在上述查询方式初始化的基础上,如果设置 U0FCR FIFO控制寄存器 和 U0IER 中断使能寄存器 则可以开启UART的中断模式。其中断主要在下述三种情况下产生

1. FIFO中数据达到触发点 触发点可选择1,4,8,14个字符

2. FIFO超时,毕竟数据可能是不“整装”的,当FIFO未到触发点,且超过延迟时间,延迟时间一半是发送时间的4-5倍,则产生超时中断,此时可读出FIFO中不完整的数据。 注意,如FIFO的触发点设置为8字符,当前FIFO中有4字符,暂停发送,产生超时中断,则会产生4此,每次中断后读出一个字符,剩余字符在FIFO中等待,再次产生中断,以此类推。

3. 数据错误,包括奇偶校验错误,帧错误,溢出错误等,具体可在UxLSR中查询

中断优先级为 3 > 2 = 1 > THRE

还有一种中断——THRE中断,在以后论述。

一个典型的初始化


一个典型的初始化

uart0_init(mode,115200);//初始化UART,此时DLAB=0

U0FCR=0x81;//开启UARTFIFO模式触发点8字符

U0IER=0x01;//使能RBR中断,禁止THRERx线状态中断(DLAB=0时)

VICIntSelect=0;//选择所有中断为IRQ中断

VICVectCntl0=0x20|0x06;//slot0对应中断源为UART

VICVectAddr0=(uint32)uart_int;//slot0中断服务程序

VICIntEnable=1<<0x06;//使能UART中断源

IRQEnable();//开启目标板IRQ中断

一个典型的中断处理例程

void__irquart_int()

...{

uint8i;

uart0_send_str("Interrupt!");

if((U0IIR&0x0F)==0x04)...{//如果中断是由FIFO数据达到触发点引起的

rcv_new=1;

for(i=0;i<8;i++)...{

buffer[i]=U0RBR;

}

}elseif((U0IIR&0x0F)==0x0C)...{//如果中断是由FIFO超时引起的

buffer[0]=U0RBR;

uart0_send_byte(buffer[0]);

}

VICVectAddr=0;//清中断标志,不是外部中断不必复位EXTINT



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭