当前位置:首页 > 单片机 > 单片机
[导读]  52本身有256B的数据存储区,如果没在意一些细节,很容易出现RAM超过128就报错的情况。现讲其问题解释如下:  最常见的是以下两种:  ① 超过变量128后必须使用compact模式编译,实际的情况是只要内存占用量不

  52本身有256B的数据存储区,如果没在意一些细节,很容易出现RAM超过128就报错的情况。现讲其问题解释如下:

  最常见的是以下两种:

  ① 超过变量128后必须使用compact模式编译,实际的情况是只要内存占用量不超过256.0,就可以用 small 模式编译

  ② 128以上的某些地址为特殊寄存器使用,不能给程序用。与 PC 机不同,51 单片机不使用线性编址,特殊寄存器与 RAM 使用重复的重复的地址。但访问时采用不同的指令,所以并不会占用 RAM 空间。

  ③是否把一些固定的代码存贮到了CODE区。如果把没变化的数据也存储到DATA去,就太浪费了!

  由于内存比较小,一般要进行内存优化,尽量提高内存的使用效率。

  以 Keil C 编译器为例,small 模式下未指存储类型的变量默认为data型,即直接寻址,只能访问低 128 个字节,但这 128 个字节也不是全为我们的程序所用,寄存器 R0-R7必须映射到低RAM,要占去 8 个字节,如果使用寄存组切换,占用的更多。所以可以使用 data 区最大为 120 字节,超出 120 个字节则必须用 idata 显式的指定为间接寻址,另外堆栈至少要占用一个字节,所以极限情况下可以定义的变量可占 247 个字节。当然,实际应用中堆栈为一个字节肯定是不够用的,但如果嵌套调用层数不深,有十几个字节也够有了。

为了验上面的观点,写了个例子:



#define LEN 120

data UCHAR tt1[LEN];

idata UCHAR tt2[127];


void main()

{

UCHAR i,j;


for(i = 0; i < LEN; ++i )

{

j = i;

tt1[j] = 0x55;

}

}


可以计算 R0-7(8) + tt1(120) + tt2(127) + SP(1) 总共 256 个字节

keil 编译的结果如下:


Program Size: data=256.0 xdata=0 code=30

creating hex file from ".DebugTest"...

".DebugTest" - 0 Error(s), 0 Warning(s).

(测试环境为 XP + Keil C 7.5)

这段代码已经达到了内存分配的极限,再定义任何全局变量或将数组加大,编译都会报错 107

这里要引出一个问题:为什么变量 i、j 不计算在内?这是因为 i、j 是局部变量,编译器会试着将其优化到寄存器 Rx 或栈。问题也就在这了,如果局部变量过多或定义了局部数组,编译器无法将其优化,就必须使用 RAM 空间,虽然全局变量的分配经过精心计算没有超出使用范围,仍会产生内存溢出的错误!

而编译器是否能成功的优化变量是根据代码来的。

上面的代码中,循环是臃肿的,变量 j 完全不必要,那么将代码改成:



UCHAR i;

UCHAR j;


for(i = 0; i < LEN; ++i )

{

tt1[i] = 0x55;

}


再编译看看,出错了吧!

因为编译器不知道该如何使用 j,所以没能优化,j 须占 RAM 空间,RAM 就溢出了。

(智能一点的编译器会自动将这个无用的变量去掉,但这个不在讨论之列了)

另外,对 idata 的定义的变量最好放在 data 变量之后

对于这一种定义


uchar c1;

idata uchar c2;

uchar c3;

变量 c2 肯定会以间接寻址,但它有可能落在 data 区域,就浪费了一个可直接寻址的空间


  变量优化一般要注意几点:

①让尽可能多的变量使用直接寻址,提高速度。假如有两个单字节的变量,一个长119的字符型数组,因为总长超过 120 字节,不可能都定义在 data 区,按这条原则,定义的方式如下:


data UCHAR tab[119];

data UCAHR c1;

idata UCHaR c2;

但也不是绝的,如果 c1, c2 需要以极高的频率访问,而 tab 访问不那么频繁,则应该让访问量大的变量使用直接寻址:


data UCAHR c1;

data UCHaR c2;

idata UCHAR tab[119];

这个是要根据具体项目需求来确定的


②提高内存的重复利用率

就是尽可能的利用局部变量,局部变量还有个好处是访问速度比较快。由前面的例子可以看出,局部变量 i, j 是没有单独占用内存的,子程序中使用内存数目不大的变量尽量定义为局部变量。


③对于指针数组的定义,尽可能指明存储类型,尽量使用无符号类型变量

一般指针需要一个字节额外的字节指明存储类型,8051 系列本身不支持符号数,需要外加库来处理符号数,一是大大降低程序运行效率,二是需要额外的内存


④避免出现内存空洞

可以通过查看编译器输出符号表文件(.M51)查看,对前面的代码,M51文件中关于内存一节如下:



* * * * * * * D A T A M E M O R Y * * * * * * *

REG 0000H 0008H ABSOLUTE "REG BANK 0"

DATA 0008H 0078H UNIT ?DT?TEST

IDATA 0080H 007FH UNIT ?ID?TEST

IDATA 00FFH 0001H UNIT ?STACK


第一行显示寄存器组0从地址0000H开始,占用0008H个字节

第二行显示DATA区变量从0008H开始,占用0078H个字节

第三行显示IDATA区变量从0080H开始,占用007F个字节

第四行显示堆栈从00FFH开始,占0001H个字节


由于前面代码中变量定义比较简单,且连续用完了所有空间,所以这里显示比较简单,变量定义较多时,这里会有很多行


如果全局变量与局部变量分配不合理,就有可能出现类似下面的行


0010H 0012H   *** GAP ***

该行表示从0010H开始连续0012H个字节未充分利用或根本未用到,出现这种情况最常见的原因是局变量太多、多个子程序中的局部变量数目差异太大、使用了寄存器切换但未充分利用



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

这款全新的中端MCU系列为设计人员提供了更高水平的安全性和灵活性

关键字: 嵌入式 单片机

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器
关闭
关闭