当前位置:首页 > 单片机 > 单片机
[导读] 菜鸟学PIC单片机(三)LCD时钟的总结,并由中断暂禁的后果说开去上回说到刚接触PIC没20天的菜鸟碧水长天准备"野心勃勃"写一段LCD显示精确时钟的但遭到无情狙击的故事,幸好得到这里行家的点拨,方能理清一点

菜鸟学PIC单片机(三)LCD时钟的总结,并由中断暂禁的后果说开去

上回说到刚接触PIC没20天的菜鸟碧水长天准备"野心勃勃"写一段LCD显示精确时钟的但遭到无情狙击的故事,幸好得到这里行家的点拨,方能理清一点头绪,于是,今天就接着上回的故事,总结一些通用的注意事项,并对LCD显示精确时钟进行功能实现上的分析.



一、先总结一些细节的问题,再分析功能实现上的缺陷:


1. 关于中断现场的保护和恢复的问题
由于movf指令可以影响STATUS,而W又要在现场保护过程中起中转寄存器的作用,因此,应先保护W,再保护STATUS,最后是保存其他现场变

量。保存的时候应注意,如果W的备份寄存器w_temp若不是位于快速存取区70H~7FH,假如w_temp定位为0x20,那么还需保证bank1,bank2,

bank3中的0xA0,0x120,0x1A0出的单元没有被派做他用。如果fsr_temp,pclath_temp等也不是定义在快速存取区的话,那么,需注意在备份FSR

,PCLATH之前,要确保当前操作在bank0处(当然,在其他bank也可,但必须注意在恢复现场的时候,也要保证在相同的bank中对备份积存器进

行操作,为了方便起见,建议控制在bank0处进行保存和恢复操作)。
至于,备份寄存器若定位与快取区中,那么对bank没有要求,但对次序的要求仍然存在的。

这是经过改进后的恢复和保存现场代码:
ORG0x000; processor reset vector
nop; ICD need
gotomain; go to beginning of program

ORG0x004; interrupt vectorLOCation
movwfw_temp; 先保存W
movfwSTATUS; 再保存STATUS到W中
clrfSTATUS; 注意该指令,确保对status_temp,pclath_temp的操作在bank0中
; (如果备份寄存器定义在快取区中,可无取消此条clrf及恢复现场那条clrf指令)
movwfstatus_temp; 保存上上条指令备份在W中的STATUS
movfwPCLATH; 备份PCLATH
movwfpclath_temp
movfwFSR; 备份FSR
movwffsr_temp
; 可添加其他欲保护的变量

;******************** 中断服务代码
btfssINTCON,T0IE; 判断是否为T0中断
gotoother_int
btfssINTCON,T0IF; it 's the time of T0 int
gotoother_int
bcfINTCON,T0IF; 是T0中断,清除中断标志
movlw0x10; 微秒的高位字节加上定时时间 256x16分频=4096=0x1000的高位(0x10)
addwfus+1
gotoend_int
other_int; 可添加其他中断服务代码
nop; other isr codeCANbe added
;**********************************
end_int; 恢复现场
clrfSTATUS; 确保恢复现场的操作在bank0中(如果备份寄存器定义在快取区中,可无取消此条指令)
; 可添加恢复其他变量
movfwfsr_temp; 恢复FSR
movwfFSR
movfwpclath_temp; 恢复PCLATH(FSR和PCLATH的恢复无先后之分)
movwfPCLATH
movfwstatus_temp; 先恢复STATUS
movwfSTATUS;
swapfw_temp,f
swapfw_temp,w; 最后恢复W,采用swapf是因为其不会影响STATUS
retfie; 中断返回

;*********


2.(保留区域,待添加)

--------------------------------------------

二、分析功能实现上的缺陷,并由中断响应及子程序暂禁中断所引起的问题说开去

先将昨天贴的源程序的main部分的代码拿出来分析:
主程序要实现的功能是显示时钟:
HH MM SS
00:00:00
定时中断每次产生4096us的增量,在中断服务中,将此时间增量累加在(us+1:us)两个相邻的字节中,由_clock子程序
对(us+1:us)进行及时判断,超出50ms即取走一个50ms的增量,并保留余量在(us+1:us)中以保证长时间定时精确.

主程序流程:

main
nop
call_init; 调用初始化子程序,清缓冲区,实现液晶显示器和TMR0的初始化操作.
call_disp1; 调用显示字符"HH MM SS"的子程序
loop
call_clock; 调用时间更新子程序,更新定时中断产生的时间累加值
call_convert; 调用时钟的小时,分,秒的BCD码转换子程序,并换成字符对应的ASCII码
call_disp2; 调用转换后的小时:分:秒字符的显示子程序
gotoloop; 执行主循环

分析如下:
由于_clcok和_convert码制字符转换子程序与时间显示_disp2子程序是前后的顺序关系的,在时间显示时,前两个子程序是不工作的,由于

LCM的慢显特性,使得该子程序执行时间较长,这样,即使中断定时时间已经累计到应改变显示结果的条件,但此刻_disp2若仍在显示上一时间

,使得_clcok不能及时更新时间,并且_convert不能转换代码,那么显示结果仍然没有变化。当loop循环执行一次完毕之后,_clock和_convert才开始更新.
但是这里可能会有个疑问:既然如此,计算_disp2的执行时间大概为500ms,当_disp2子程序执行完毕之后,那么也开始循环执行_clock和

_convert,然后LCM再显示,此刻应该显示的是更新的时间了吧,总时间也大概为1s多一点,为何执行结果大概等到1分钟左右,秒区数字才加1呢?
问题提得很好。

思考原因可能为 :由于_clock不能及时更新时间,及不能及时取走(us+1:us)中大于50ms时的50ms量,但中断服务代码中始终严格执行下面两

条指令:
movlw0x10; 256x16分频=4096=0x1000的高位(0x10)
addwfus+1; 微秒的高位字节加上定时时间
多次累加后(15次累加令us+1单元的内容为从00H到F0H)令us+1单元溢出,丢失定时的时间增量,若当_clock更新时,(us+1:us)发生溢出使得其

值小于50ms(代数值50000),因此也不能使得变量ms50的值增加,那么秒钟变量sec也不会变化,转换后时间显示仍然保持不变.
注意: 当_clock更新时间时,(us+1:us)若满足大于50 000的条件,则ms50变量加一,在main主程序中_clock循环更新时,若捕捉到20次

(us+1:us)单元大于50000(50ms)时,sec的值才能加1。而这个在多次更新过程中捕捉该条件的周期,就是秒区显示加1的周期,我认为这个周

期是固定的,也许是30秒,也许是1分钟,也许更长,只要程序长度和结构没有发生变化。后来在程序中,我增加延时子程序的时间,结果秒区数字加1的间隔时间也跟着延长了。

到了这里,知道了问题所在,那么在基于原程序的框架下,我对几种解决方案都尝试了一下:

方案1:
[既然症结是在_clock不能真实捕捉到每一次中断时间累加增量(us+1:us)值大于50ms(50000)的条件,那么,将_clock内嵌中断中去,中

断每一次改变us+1的值然后马上进行时间更新,这样,使得_clock能真实捕捉每一次(us+1:us)值大于50ms(50000)的条件,也能真实更新系统时

间。]

方案1分析:这样确实可以保证每一次都可以捕捉us时间增量,不考虑运行的结果问题,该方案有几个缺点:

1) 中断服务代码由于调用了_clock子程序,显得异常臃肿;
2) 每次中断(4096us)都调用_clock,判断其是否到50ms(值为50000),增加了程序的开销,效率较低;
3) 由于LCM慢显示特性的原因,可能使得结果仍然不能令人满意:

关于3) 我描述一下一下:虽然此刻,秒区的数字能基本上每秒钟跳变一次了,但是调试过程中出现了一个问题: 秒区数字跳变有时会忽略下

一个值,而跳到下下一个值去,比如,当前显示12,然后马上显示14。

那么问题出在什么地方呢? 试想,若_convert在进行格式转换时,发生中断,且更改了sec变量,那么,_convert会按新的值进行转换,这

样,本来这次要转换并送显示的旧值被新值给覆盖了,所以,_disp2在显示的时候,也就根据_convert的转换结果,忠实地显示了一个新值,将

本来应该显示的值给忽略了。

既然如此,有什么办法来解决呢?两个方法:

(a)_convert在对时间变量进行格式转换时,暂时禁止TMR0中断,转换后再开启TMR0中断;
(b)将_conver也归并到中断代码中去,规定次序,使得_clock更新时间后,_convert再进行转换,这样,格式转换区的变量不用担心被

_clock修改;

**那么方法(a)会存在什么问题呢?试想:当_convert在转换时,TMR0定时时间到,TMR0向内核提交中断,但由于TMR0中断请求被禁止,即使

_convert转换完毕之后,允许TMR0中断,那么TMR0的中断请求会不会被丢弃呢? 显然,根据PIC的中断系统,当TMR0定时时间到后,首先将

T0IF置1,并由T0IF向内核提出中断请求,如果该中断请求被禁止,那么只要其中断标志T0IF仍然保持为1,当该中断响应解禁之后,内核根据

T0IF立即响应其中断。
因此,方法(a)中"TMR0的中断请求可能会被遗弃的担心"是多余的.

并且,由于_convert的执行时间少于一个中断周期,所以它对中断的暂禁操作不会出现在一个暂禁中断的过程中,中断标志T0IF的多次被置一

的现象,所以不会发生中断响应被冲掉的不良后果。同样,_clock子程序在没有加载到中断服务代码中去时,其对TMR0的暂禁影响与_convert分

析的结果相同.

那么,既然如此,我认为这样的话,由于_disp2的执行时间也不会超过1秒,因此,不会出现当秒跳变时,_convert来不及转换而丢弃上一次待

转换的字符。所以,结果应该是正常.
于是按照这种方法修改程序,结果发现秒区每次都跳变,最小增量为2,最多为为3(跳变周期大约1.2秒)。于是将延迟子程序的外循环值由

64H-〉40H(大概右25ms变成16ms),结果仍然如此,秒区每次都跳变,只是跳变节奏比未修改延时子程序前变快很多(跳变周期大约0.6s),但最

小跳变增量1,最多为2。

[正在分析其根源,也请有兴趣的兄弟一起思考一下.....]


那么那试试方法(b).我按方法(b)修改了程序,结果发现,仍然出现秒区数字跳变的情况。

究其原因,跟3)类似:当_disp2运行的时候,准备从显示缓冲区取字符来显示,如果发生中断,_clock,_convert更改了显示缓冲区的内容

,使得本来即将待显示的内容被替换成下一次显示的内容。所以,该方法依然存在,而且,由于_disp执行时间大于一次中断的255us,如果在

_disp执行过程暂禁TMR0中断将会丢弃中断请求(即:TMR0的中断请求被自己下一次中断请求覆盖,上一次中断请求被忽略,显示时间将变慢)。



----------------------------------------------------------------

方案2:

[中断服务仍然只改变us+1的值,但是格式转换及显示功能内嵌到_clock子程序中去,主程序执行_clock循环。]

下午我按这种方式更改了程序,在软件模拟时发现程序跑飞。原因是:内嵌了这些功能之后,代码由400行变成500多行,在_disp1查表显示

字符时,_table已经超过PCL的256字ROM空间,而查表时未注意PCLATH内容,以致跑飞。解决此问题后,下载到ICD中运行,发现结果倒是正常

了,但是感觉时间好像有一点点慢。
呵呵,细心的站友想必已经看出来了,由于加了显示功能的_clock子程序中依然是暂时禁止TMR0中断的,虽然该时间显示功能只是在时间跳

变时刷新LCD屏幕,但是正是由于在时间跳变时执行时间刷新的周期过长(大于4096us),TMR0 的多次中断请求最后只被响应一次,即T0IF多次

被置1后,却只能在_clock子程序末对TMR0解禁时得到一次中断响应,未被响应的累积时间被丢弃了,没有加到(us+1:us)中去,引起时钟显示变

慢了.


方案3:

由于前两个方案均存在不近人意的问题,难道在用TMR0做秒表时,且当"定时中断的周期小于LCD慢显器件的驱动刷新周期的情况下",就没有一个

完美的解决方案么?
留在这里和有兴趣的站友一起思考...

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

新产品加入了同类产品中唯一的蓝牙低功耗产品系列模块、片上系统(SoC)产品和即插即用选项

关键字: 蓝牙 片上系统 单片机

数字可编程变频电源是一种能够根据用户需求调整输出电压和频率的电源设备。它在工业生产和实验室研究等领域中被广泛使用。

关键字: 单片机 可编程电源 系统设计

可编程电源的基本原理是通过控制电源输出的电压和电流来满足用户的需求。一般情况下,可编程电源由电源模块、电压测量模块、电流测量模块和控制模块组成。

关键字: 单片机 可编程 电源

本设计的控制系统主要包括:倾斜模块、超声波模块、语音模块、光敏电阻模块及电源等。

关键字: 单片机 STC51

本文针对电动两轮车自燃防控装置的开发与分析进行了研究。通过电动两轮车自燃原因分析,提出了电动两轮车的自燃防控智能装置设计思路,介绍了电动两轮车的自燃防控智能

关键字: STC89C52RC 单片机 微控制器

现在市面上还不存在一种方便实验人员选取芯片,以及方便管理人员对芯片进行智能化管理的芯片柜,为此希望通过研发这款智能芯片柜,来解决以上问题。​

关键字: 单片机 芯片

这款全新的中端MCU系列为设计人员提供了更高水平的安全性和灵活性

关键字: 嵌入式 单片机

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机
关闭
关闭