当前位置:首页 > 单片机 > 单片机
[导读]一、电源的干扰及其抑制技术一般情况下,任何电子设备或系统无疑都离不开供电电源,因此首先探讨电源的抗干扰措施具有实际的意义。信号发生器包括静电测试仪、浪涌测试仪、脉冲群模拟器等都可作为干扰源模拟测试。电

一、电源的干扰及其抑制技术

一般情况下,任何电子设备或系统无疑都离不开供电电源,因此首先探讨电源的抗干扰措施具有实际的意义。信号发生器包括静电测试仪、浪涌测试仪、脉冲群模拟器等都可作为干扰源模拟测试。

电源干扰的耦合途径和其他干扰源类似,基本上也分为电磁感应耦合、电容耦合、共阻抗耦合和辐射耦合等。

1、电力供电系统的抗干扰

电力供电系统为所有用电设备提供能量来源,如果从源头上切断干扰源意义很大。

在供电系统,比如变电所内的变压器、大电流电缆、电容器、电抗器和电容等的周围存在极强的变更电磁场,会对处于其内部的电子设备产生电磁场干扰;一次设备载流体与二次回路间存在分布电容,会产生电容耦合干扰;供电线路对地绝缘不良,也会产生不稳定的泄露电流,地电流在大地中流动会产生电位差,在变电站内两端接地电缆芯和屏蔽层上产生电流而形成干扰;二次设备接地点选择不当,漏电流在各点之间形成电位差,使二次设备产生不确定的故障现象。

在供电系统中,还存在着一种破坏力很大的污染-谐波干扰,随着可控硅变流技术以及大功率开关器件的广泛应用,再加上各种非线性负荷的增长,供电电压波形发生畸变,导致用电设备诸如交流发电机、电力电容器等工作不正常,在测控系统中会使计算机工作失真,产生误码、错码,控制失灵。

抑制电磁干扰可在变电所内设置屏蔽、防静电接地系统,系统接地应保持良好,并保证供电线路绝缘可靠,消除漏电流。如果谐波比较严重,可在电容补偿回路中串联电抗器,安装由电感、电阻及电容组成的单调谐波滤器或高通滤波器。

由于供电系统干扰抑制处理起来比较费事,所以对二次用电设备就要下功夫采取保护措施,以免受干扰危害。

2、稳压电源的抗干扰

在测控系统中,特别是计算机参与工作的系统,各部分电路模块都采用直流稳压电源供电。稳压电源的抗干扰措施基本上分为:使用电源滤波器,减小电源输出阻抗,变压器采用屏蔽措施,一般由市电经过变压、整流、滤波、稳压而实现。电路模块分别供电,印刷板的电源与地之间并接去耦电容等。

3、开关电源的抗干扰

开关电源本身就是一个很大的噪声源,开发开关电源的目的旨在小型化,而越是小型化,就越要使开关频率高频化。这些年来,随着电源技术的飞速发展,高频开关电源控制从最初的模拟电路逐渐发展到微处理器、DSP等高集成度的控制器件。这些器件体积小、精密度高,但开关电源内的电磁干扰、辐射相对其他通讯设备更强,这对高频开关电源的抗干扰设计技术提出了更高的要求。

开关电源抗干扰设计的基本原则是:抑制干扰源,切断干扰传播途径,提高敏感器件的抗干扰性能。开关电源的抗干扰设计应该包括浪涌抑制、滤波器、高频变压器、软开关技术、印刷线路板EMC设计等。

浪涌抑制。对电网中因雷电或其他负荷很大的设备瞬间工作而引起的浪涌冲击噪声(雷击浪涌发生器),可以采取浪涌抑制方法进行消除。浪涌抑制主要是采用浪涌电压控制器件。这种器件基本上分为两大类:第一类器件,其主要特点是器件击穿后的残压很低,不仅有利于浪涌电压的迅速泄放,且可使功耗大大降低。另外,该类器件的漏电流小,器件极间电容小,对线路的影响很小。

二、传感器的干扰抑制

传感器在测控系统的最前沿工作,受到的干扰噪声多种多样,应针对不同的干扰噪声采取不同的抗干扰措施。传感器的干扰噪声总体上可分为瞬时干扰噪声和辐射干扰噪声两大类。瞬时干扰噪声主要是在电气设备操作执行时发生,如合闸、分闸、雷电产生瞬间等(可使用雷击浪涌发生器模拟测试)。

辐射干扰噪声是由传感器外部的电磁辐射造成的。这种噪声源十分广泛,几乎包括所有电气、电力设备等。同时系统中的模拟数字电路部分有公共接地、公共电源时,数字信号的频繁电流变化在模拟电路中产生噪声,它们通过静电耦合、电磁耦合和漏电电流等形式存在于传感器的电路中。

干扰噪声进入传感器系统的主要途径有传感器信号传输通道和供电系统等。信号传输通道是传感器输出信号放大、整形、模数转换、反馈信号等的途径,由于信号在传输线上会出现延时、畸变、衰减与通道干扰,所以再传输过程中长线干扰是主要因素。

三、模拟电路抗干扰技术

在单片机测控系统中经常需要处理模拟信号。信号发生器的特点是,在时间上和幅值上均是连续的,在一定动态范围内可能取任意值。大多数物理量都是时间连续的变量,如温度、压力、流量等,这些变量通过相应的传感器可转换为模拟电信号输入到测控系统中。处理模拟信号的电子电路称为模拟电路。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭