当前位置:首页 > 单片机 > 单片机
[导读]控制转移指令用于控制程序的流向,所控制的范围即为程序存储器区间,MCS-51系列单片机的控制转移指令相对丰富,有可对64kB程序空间地址单元进行访问的长调用、长转移指令,也有可对2kB字节进行访问的绝对调用和绝对转

控制转移指令用于控制程序的流向,所控制的范围即为程序存储器区间,MCS-51系列单片机的控制转移指令相对丰富,有可对64kB程序空间地址单元进行访问的长调用、长转移指令,也有可对2kB字节进行访问的绝对调用和绝对转移指令,还有在一页范围内短相对转移及其它无条件转移指令,这些指令的执行一般都不会对标志位有影响。


[2].条件转移指令(8条)
条件转移指令是指在满足一定条件时进行相对转移

JZ rel; A=0,(PC)+ 2 + rel→(PC),累加器中的内容为0,则转移到偏移量所指向的地址,否则程序往下执行

JNZ rel; A≠0,(PC)+ 2 + rel→(PC),累加器中的内容不为0,则转移到偏移量所指向的地址,否则程序往下执行


这两条指令是判断A内容是否为0转移指令
第一条指令的功能是:如果(A)=0,则转移,否则顺序执行(执行本指令的下一条指令)。转移到什么地方去呢?如果按照传统的方法,就要算偏移量,很麻烦,好在现在我们可以借助机器汇编了,因此这条指令我们可以这样理解:
JB标号
即转移到标号处,下面举一例说明:
MOV A,R0
JZ L1
MOV R1,#00H
AJMP L2
L1:MOV R1,#0FFH
L2:SJMP L2
END
在执行上面这段程序前,如果R0中的值是0的话,就转移到L1执行,因此最终的执行结果是R1中的值为0FFH。而如果R0中的值不等于0,则顺序执行,也就是执行MOV R1,#00H指令。最终的执行结果是R1中的值等于0。


第一条指令的功能清楚了,第二条当然就好理解了,如果A中的值不等于0,就转移。把上面的例子中的JZ改成JNZ试试看,程序执行的结果是怎样的?

CJNE A, data, rel; A≠(data),(PC)+ 3 + rel→(PC),累加器中的内容不等于直接地址单元的内容,则转移到偏移量所指向的地址,否则程序往下执行

CJNE A, #data, rel; A≠#data,(PC)+ 3 + rel→(PC),累加器中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行

CJNE Rn, #data, rel; A≠#data,(PC)+ 3 + rel→(PC),工作寄存器Rn中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行

CJNE @Ri, #data, rel; A≠#data,(PC)+ 3 + rel→(PC),工作寄存器Ri指向地址单元中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行


第一条指令的功能是将A中的值和立即数data比较,如果两者相等,就顺序执行(执行程序的下一条指令),如果不相等,就转移,同样的,我们可以将rel理解成标号。即CJNE A,#data,标号。这样利用这条指令,我们就可以判断两数是否相等,这在很多场合是非常有用的。但有时还想得知两数比较后哪个大,哪个小。本条指令也具有这样的功能,如果两数不相等,则CPU还会反映出哪个数大,哪个数小,这是用CY(进位位)来实现的。如果前面的数(A中的)大,则CY=0,否则CY=1,因此在程序转移后再次利用CY就可判断出A中的数比data大还是小了。
例:
MOV A,R0
CJNE A,#10H,L1
MOV R1,#0FFH
AJMP L3
L1:JC L2
MOV R1,#0AAH
AJMP L3
L2:MOV R1,#0FFH
L3:SJMP L3
上面的程序中有一条指令我们还没学过,即JC,这条指令的原型是JC rel,作用我上面的JZ类似,但是它是判断CY是0,还是1进行转移,如果CY=1,则转移到JC后面的标号处执行,如果CY=0则顺序执行(执行它的下面的一条指令)。
分析一下上面的程序,如果(A)=10H,则顺序执行,即R1=0。如果(A)不等于10H,则转到L1处继续执行,在L1处,再次进行判断,如果(A)大于10H,则CY=1,将顺序执行,即MOV R1,#0AAH指令,而如果(A)小于10H,则将转移到L2处运行,即执行MOV R1,#0FFH指令。


因此最终结果是:本程序执行前,如果(R0)=10H,则(R1)=00H,如果(R0)大于10H,则(R1)=0AAH,如果(R0)小于10H,则(R1)=0FFH。
弄懂了这条指令,其它的几条就类似了,第二条是把A当中的值和直接地址的中的值比较,第三条则是将直接地址中的值和立即数比较,第四条是将间址寻址得到的数和立即数比较,这里就不详谈了,下面给出几个相应的例子。
CJNE A,10H ;把A中的值和10H中的值比较(注意和前面题目的区别)
CJNE 10H,#35H;把10H中的值和35H中的值比较
CJNE @R0,#35H;把R0中的值作为地址,从此地址中取数并和35H比较。

DJNZ Rn, rel;(Rn)-1→(Rn),(Rn)≠0,(PC)+ 2 + rel→(PC)工作寄存器Rn减1不等于0,则转移到偏移量所指向的地址,否则程序往下执行

DJNZ data, rel;(Rn)-1→(Rn),(Rn)≠0,(PC)+ 2 + rel→(PC)直接地址单元中的内容减1不等于0,则转移到偏移量所指向的地址,否则程序往下执行


这两条指令在前面我们已有提到,这里就不多说了。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

8位单片机在嵌入式设计领域已经成为半个多世纪以来的主流选择。尽管嵌入式系统市场日益复杂,8位单片机依然不断发展,积极应对新的挑战和系统需求。如今,Microchip推出的8位PIC®和AVR®单片机系列,配备了先进的独立...

关键字: 单片机 嵌入式 CPU

在嵌入式系统开发中,程序烧录是连接软件设计与硬件实现的关键环节。当前主流的单片机烧录技术已形成ICP(在电路编程)、ISP(在系统编程)、IAP(在应用编程)三大技术体系,分别对应开发调试、量产烧录、远程升级等不同场景。...

关键字: 单片机 ISP ICP IAP 嵌入式系统开发

在嵌入式系统开发中,看门狗(Watchdog Timer, WDT)是保障系统可靠性的核心组件,其初始化时机的选择直接影响系统抗干扰能力和稳定性。本文从硬件架构、软件流程、安全规范三个维度,系统分析看门狗初始化的最佳实践...

关键字: 单片机 看门狗 嵌入式系统

本文中,小编将对单片机予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 单片机 开发板 Keil

随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。

关键字: 单片机 电磁兼容

以下内容中,小编将对单片机的相关内容进行着重介绍和阐述,希望本文能帮您增进对单片机的了解,和小编一起来看看吧。

关键字: 单片机 复位电路

在这篇文章中,小编将为大家带来单片机的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 单片机 异常复位

今天,小编将在这篇文章中为大家带来单片机的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 仿真器

单片机将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 单片机 中断 boot

一直以来,单片机都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来单片机的相关介绍,详细内容请看下文。

关键字: 单片机 数字信号 模拟信号
关闭