当前位置:首页 > 单片机 > 单片机
[导读]1.systick介绍 Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会

1.systick介绍

Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会根据“心跳”的节拍来工作,把整个时间段分成很多小小的时间片,每个任务每次只能运行一个“时间片”的时间长度就得退出给别的任务运行,这样可以确保任何一个任务都不会霸占整个系统不放。或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息。

知道systick在系统中的地位后,我们来了解systick的实现。这里只是举例说明systick的使用。它有四个寄存器,笔者把它列出来:

SysTick->CTRL, --控制和状态寄存器

SysTick->LOAD, --重装载寄存器

SysTick->VAL, --当前值寄存器

SysTick->CALIB, --校准值寄存器

下图有他们的分别描述:下图引用地址:http://blog.csdn.net/marike1314/article/details/5673684

2.systick编程

现在我们想通过Systick定时器做一个精确的延迟函数,比如让LED精确延迟1秒钟闪亮一次。

思路:利用systick定时器为递减计数器,设定初值并使能它后,它会每个1系统时钟周期计数器减,计数到0时,SysTick计数器自动重装初值并继续计数,同时触发中断。

那么每次计数器减到0,时间经过了:系统时钟周期*计数器初值。我们使用72M作为系统时钟,那么每次计数器减1所用的时间是1/72M,计数器的初值如果是72000,那么每次计数器减到0,时间经过(1/72M)*72000= 0.001,即1ms。(简单理解:用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000)

首先,我们需要有一个72M的systick系统时钟,那么,使用下面这个时钟OK就!

SystemInit();

这个函数可以让主频运行到72M。可以把它作为systick的时钟源。

接着开始配置systick,实际上配置systick的严格过程如下:

1、调用SysTick_CounterCmd() --失能SysTick计数器

2、调用SysTick_ITConfig() --失能SysTick中断

3、调用SysTick_CLKSourceConfig() --设置SysTick时钟源。

4、调用SysTick_SetReload() --设置SysTick重装载值。

5、调用SysTick_ITConfig() --使能SysTick中断

6、调用SysTick_CounterCmd() --开启SysTick计数器

这里大家一定要注意,必须使得当前寄存器的值VAL等于0!

SysTick->VAL = (0x00);只有当VAL值为0时,计数器自动重载RELOAD。

接下来就可以直接调用Delay();函数进行延迟了。延迟函数的实现中,要注意的是,全局变量TimingDelay必须使用volatile,否则可能会被编译器优化。

下面我们来做一下程序分析:

(1)系统时钟进配置

首先我们对系统时钟进行了配置并且SetSysClock(void)函数使用72M作为系统时钟;

为了方面看清代码我选择截图:

(2)先来看看主函数


intmain(void)

{unsignedchari=0;

unsignedchara[]="abncdee";

SystemInit1();//系统初始化

if(SysTick_Config(72000))//1ms响应一次中断

{

/*Captureerror*/

while(1);

}

/*解析:因为要求是每500ms往中位机发数据一件事,所以放在while语句中,

*送据+延时可以完成相当于中断的效果;

*若是多任务中,其中一个任务需要中断,这把这个任务放在中断函数中调用;

*/

while(1)

{

//测试代码:测试定时器功能,通过延时来测试

GPIO_SetBits(GPIOC,GPIO_Pin_6);//V6

Delay(50);

GPIO_ResetBits(GPIOC,GPIO_Pin_6);//V6

Delay(50);

//功能1代码:每500ms发送数据

/*

UART2_TX485_Puts("123450");

Delay(500);

*/

//功能2代码:上位发特定指令,中位机执行相应操作

//RS485_Test();

}

}

(3)系统滴答定时器的配置--主角登场:

主函数中:SysTick_Config(72000) ;滴答定时器的参数是72000即计数72000

(因为我们使用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000)

在文件Core_cm3.h中

SysTick_Config函数的具体实现如下:


static__INLINEuint32_tSysTick_Config(uint32_tticks)

{

if(ticks>SYSTICK_MAXCOUNT)

return(1);/*Reloadvalueimpossible*/

SysTick->LOAD=(ticks&SYSTICK_MAXCOUNT)-1;//systick重装载值寄存器/*setreloadregister*/

NVIC_SetPriority(SysTick_IRQn,(1<<__NVIC_PRIO_BITS)-1);/*setPriorityforCortex-M0SystemInterrupts*/

SysTick->VAL=(0x00);//systick当前值寄存器

/* Load the SysTick Cou

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭