当前位置:首页 > 单片机 > 单片机
[导读]最近在调试传感器的那块程序,这里总结一下自己的心得调试程序的方法方法1:led显示法,在程序中调用这一句函数led = 0;可以知道程序运行到哪里,为什么会出错,到什么地方陷入了死循环方法二:串口打印法,串口打印

最近在调试传感器的那块程序,这里总结一下自己的心得


调试程序的方法


方法1:led显示法,在程序中调用这一句函数led = 0;可以知道程序运行到哪里,为什么会出错,到什么地方陷入了死循环


方法二:串口打印法,串口打印法可以知道函数输出的东西是什么,程序中只需要使用串口中断就可以了,关于串口怎么样使用,我觉得等一下我需要总结一下最近编程的问题


现在这里要好好总结一下串口调试法,天祥哥在他的书上总结了串口调试的方法,开始的时候虽然开了一下,了解了他是什么情况,会用串口之外,其他的什么都不懂,到现在才真正明白串口中断的真正含义是什么,串口中断可以打断单片机的执行,让单片机在执行主函数的时候去执行别的函数


现在这个例子是我用串口调试关照强度的程序

//***************************************

// BH1750FVI IIC测试程序

// 使用单片机STC89C51

// 晶振:11.0592M

// 显示:LCD1602

// 编译环境 Keil uVision2

//****************************************

#include

#include //Keil library

#include //Keil library

#include

#define uchar unsigned char

#define uint unsigned int


sbit SCL=P1^0; //IIC时钟引脚定义

sbit SDA=P1^1; //IIC数据引脚定义

#define SlaveAddress 0x46 //定义器件在IIC总线中的从地址,根据ALT ADDRESS地址引脚不同修改

//ALT ADDRESS引脚接地时地址为0xA6,接电源时地址为0x3A

typedef unsigned char BYTE;

typedef unsigned short WORD;


BYTE BUF[8]; //接收数据缓存区

uchar table[5]; //显示变量

int dis_data; //变量


void delay_nms(unsigned int k);


void Init_BH1750(void);


void conversion(uint temp_data);


void Single_Write_BH1750(uchar REG_Address); //单个写入数据

uchar Single_Read_BH1750(uchar REG_Address); //单个读取内部寄存器数据

void Multiple_Read_BH1750(); //连续的读取内部寄存器数据

//------------------------------------

void Delay5us();

void Delay5ms();

void BH1750_Start(); //起始信号

void BH1750_Stop(); //停止信号

void BH1750_SendACK(bit ack); //应答ACK

bit BH1750_RecvACK(); //读ack

void BH1750_SendByte(BYTE dat); //IIC单个字节写

BYTE BH1750_RecvByte(); //IIC单个字节读


//-----------------------------------


//*********************************************************

void conversion(uint temp_data) // 数据转换出 个,十,百,千,万

{

table[0]=temp_data/10000+0x30 ;

temp_data=temp_data%10000; //取余运算

table[1]=temp_data/1000+0x30 ;

temp_data=temp_data%1000; //取余运算

table[2]=temp_data/100+0x30 ;

temp_data=temp_data%100; //取余运算

table[3]=temp_data/10+0x30 ;

temp_data=temp_data%10; //取余运算

table[4]=temp_data+0x30;

}


//毫秒延时**************************

void delay_nms(unsigned int k)

{

unsigned int i,j;

for(i=0;i

{

for(j=0;j<121;j++)

{;}}

}


/**************************************

延时5微秒(STC90C52RC@12M)

不同的工作环境,需要调整此函数,注意时钟过快时需要修改

当改用1T的MCU时,请调整此延时函数

**************************************/

void Delay5us()

{

_nop_();_nop_();_nop_();_nop_();

_nop_();_nop_();_nop_();_nop_();

_nop_();_nop_();_nop_();_nop_();

_nop_();_nop_();_nop_();_nop_();

}


/**************************************

延时5毫秒(STC90C52RC@12M)

不同的工作环境,需要调整此函数

当改用1T的MCU时,请调整此延时函数

**************************************/

void Delay5ms()

{

WORD n = 560;


while (n--);

}


/**************************************

起始信号

**************************************/

void BH1750_Start()

{

SDA = 1; //拉高数据线

SCL = 1; //拉高时钟线

Delay5us(); //延时

SDA = 0; //产生下降沿

Delay5us(); //延时

SCL = 0; //拉低时钟线

}


/**************************************

停止信号

**************************************/

void BH1750_Stop()

{

SDA = 0; //拉低数据线

SCL = 1; //拉高时钟线

Delay5us(); //延时

SDA = 1; //产生上升沿

Delay5us(); //延时

}


/**************************************

发送应答信号

入口参数:ack (0:ACK 1:NAK)

**************************************/

void BH1750_SendACK(bit ack)

{

SDA = ack; //写应答信号

SCL = 1; //拉高时钟线

Delay5us(); //延时

SCL = 0; //拉低时钟线

Delay5us(); //延时

}


/**************************************

接收应答信号

**************************************/

bit BH1750_RecvACK()

{

SCL = 1; //拉高时钟线

Delay5us(); //延时

CY = SDA; //读应答信号

SCL = 0; //拉低时钟线

Delay5us(); //延时


return CY;

}


/**************************************

向IIC总线发送一个字节数据

**************************************/

void BH1750_SendByte(BYTE dat)

{

BYTE i;


for (i=0; i<8; i++) //8位计数器

{

dat <<= 1; //移出数据的最高位

SDA = CY; //送数据口

SCL = 1; //拉高时钟线

Delay5us(); //延时

SCL = 0; //拉低时钟线

Delay5us(); //延时

}

BH1750_RecvACK();

}


/**************************************

从IIC总线接收一个字节数据

**************************************/

BYTE BH1750_RecvByte()

{

BYTE i;

BYTE dat = 0;


SDA = 1; //使能内部上拉,准备读取数据,

for (i=0; i<8; i++) //8位计数器

{

dat <<= 1;

SCL = 1; //拉高时钟线

Delay5us(); //延时

dat |= SDA; //读数据

SCL = 0; //拉低时钟线

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭