当前位置:首页 > 单片机 > 单片机
[导读]#include "2440addr.h"extern void Uart_Printf(char *fmt,...);void Wr24C02(U32 slvAddr,U32 addr,U8 data);void Rd24C02(U32 slvAddr,U32 addr,U8 *data);void Run_IicPoll(void);void IicPoll(void) ;void Delay

#include "2440addr.h"
extern void Uart_Printf(char *fmt,...);
void Wr24C02(U32 slvAddr,U32 addr,U8 data);
void Rd24C02(U32 slvAddr,U32 addr,U8 *data);
void Run_IicPoll(void);
void IicPoll(void) ;
void Delay(int x) ;
static U8 iicData[IICBUFSIZE];
static volatile int iicDataCount;
static volatile int iicStatus;
static volatile int iicMode;
static int iicPt;


void iicMain(void)
{
unsigned int i,j;
static U8 data[256];
Uart_Printf("IIC Test(Polling) using AT24C02n");

//设置GPE15->IICSDA 和 GPE14->IICSCL
rGPEUP|= 0xc000;//Pull-up disable
rGPECON &= ~0xf0000000;
rGPECON |= 0xa0000000;//GPE15:IICSDA , GPE14:IICSCL

//Enable ACK, Prescaler IICCLK=PCLK/16, Enable interrupt, Transmit clock value Tx clock=IICCLK/16
rIICCON= (1<<7) | (0<<6) | (1<<5) | (0xf);//0xaf
rIICADD= 0x10;//2440 slave address = [7:1]
rIICSTAT = 0x10;//IIC bus data output enable(Rx/Tx)
Uart_Printf("Write test data into AT24C02n");


//写入一个page的数据,page的大小是256byte,
//page 的起始地址是0xa0,写入的数据是:0、1、2、...255。0xa0是AT24C02的页地址。
//AT24C02的页地址是0x00/0x20/0x40/0x60/0x80/0xa0/0xc0/0xe0。
for(i=0;i<256;i++)
Wr24C02(0xa0,(U8)i,i);//U32 slvAddr,U32 addr,U8 data


//初始化data数组的值为0。
for(i=0;i<256;i++)
data[i] = 0;
Uart_Printf("Read test data from AT24C02n");

//读24C02的0xa0地址中数据到data数组中。
for(i=0;i<256;i++)
Rd24C02(0xa1,(U8)i,&(data[i]));
//输出data数组接收数据的值
for(i=0;i<16;i++)
{
for(j=0;j<16;j++)
Uart_Printf("%2x ",data[i*16+j]);
Uart_Printf("n");
}
Uart_Printf("OK! Write data is same to Read data!n");
while(1);
}


void Wr24C02(U32 slvAddr,U32 addr,U8 data)
{
iicMode= WRDATA;
iicPt= 0;
iicData[0]= (U8)addr;
iicData[1]= data;
iicDataCount = 2;

//8-bit data shift register for IIC-bus Tx/Rx operation.
rIICDS= slvAddr;//0xa0

//Master Tx mode, Start(Write), IIC-bus data output enable
//Bus arbitration sucessful, Address as slave status flag Cleared,
//Address zero status flag cleared, Last received bit is 0
rIICSTAT= 0xf0;

//Clearing the pending bit isn't needed because the pending bit has been cleared.
while(iicDataCount!=-1)
Run_IicPoll();

iicMode = POLLACK;
while(1)
{
rIICDS= slvAddr;
iicStatus = 0x100;//To check if _iicStatus is changed
rIICSTAT= 0xf0;//Master Tx, Start, Output Enable, Sucessful, Cleared, Cleared, 0
rIICCON= 0xe0;//0xaf;//Resumes IIC operation. //hzh
while(iicStatus==0x100)
Run_IicPoll();

if(!(iicStatus & 0x1))
break;//When ACK is received
}
rIICSTAT = 0xd0;//Master Tx condition, Stop(Write), Output Enable
rIICCON= 0xe0;//0xaf;//Resumes IIC operation.//hzh
Delay(1);//Wait until stop condtion is in effect.
//Write is completed.
}


void Rd24C02(U32 slvAddr,U32 addr,U8 *data)
{
iicMode= SETRDADDR;
iicPt= 0;
iicData[0]= (U8)addr;
iicDataCount = 1;

rIICDS= slvAddr;
rIICSTAT = 0xf0;//MasTx,Start

//Clearing the pending bit isn't needed because the pending bit has been cleared.
while(iicDataCount!=-1)
Run_IicPoll();

iicMode= RDDATA;
iicPt= 0;
iicDataCount = 1;

rIICDS= slvAddr;
rIICSTAT = 0xb0;//Master Rx,Start
rIICCON= 0xe0;//0xaf;//Resumes IIC operation.
while(iicDataCount!=-1)
Run_IicPoll();

*data = iicData[1];
}


void Run_IicPoll(void)
{
if(rIICCON & 0x10)//Tx/Rx Interrupt Enable
IicPoll();
}


void IicPoll(void)
{
U32 iicSt,i;
iicSt = rIICSTAT;
if(iicSt & 0x8){};//When bus arbitration is failed. 总线仲裁失败
if(iicSt & 0x4){};//When a slave address is matched with IICADD
if(iicSt & 0x2){};//When a slave address is 0000000b
if(iicSt & 0x1){} ;//When ACK isn't received

switch(iicMode)
{
case POLLACK:
iicStatus = iicSt;
break;

case RDDATA:
if((iicDataCount--)==0)
{
iicData[iicPt++] = rIICDS;

rIICSTAT = 0x90;//Stop MasRx condition
rIICCON= 0xc0;
Delay(1);//Wait until stop condtion is in effect.


break;
}
iicData[iicPt++] = rIICDS;
//The last data has to be read with no ack.
if((iicDataCount)==0)
rIICCON = 0x60;//0x2f;
else
rIICCON = 0xe0;//0xaf;
break;

case SETRDADDR:
if((iicDataCount--)==0)
{
break;
}
rIICDS = iicData[iicPt++];
for(i=0;i<10;i++);
rIICCON = 0xc0;
break;
default:
break;
}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭