当前位置:首页 > 单片机 > 单片机
[导读]typedef struct PIDValue{ uint32 Ek_Uint32[3]; //差值保存,给定和反馈的差值 uint8 EkFlag_Uint8[3]; //符号,1则对应的Ek[i]为负数,0为对应的Ek[i]为正数 uint8 KP_Uint8;uint8 KI_Uint8;uint8 KD_Uint8;uint8

typedef struct PIDValue
{
uint32 Ek_Uint32[3]; //差值保存,给定和反馈的差值
uint8 EkFlag_Uint8[3]; //符号,1则对应的Ek[i]为负数,0为对应的Ek[i]为正数
uint8 KP_Uint8;
uint8 KI_Uint8;
uint8 KD_Uint8;
uint8 B_Uint8; //死区电压

uint8 KP; //显示修改的时候用
uint8 KI; //
uint8 KD; //
uint8 B; //
uint16 Uk_Uint16; //上一时刻的控制电压
}PIDValueStr;

PIDValueStr xdata PID;
/*******************************
**PID = Uk + (KP*E(k) - KI*E(k-1) + KD*E(k-2));
********************************/
void PIDProcess(void)
{
uint32 idata Temp[3]; //
uint32 idata PostSum; //正数和
uint32 idata NegSum; //负数和
Temp[0] = 0;
Temp[1] = 0;
Temp[2] = 0;
PostSum = 0;
NegSum = 0;
if( ADPool.Value_Uint16[UINADCH] > ADPool.Value_Uint16[UFADCH] ) //给定大于反馈,则EK为正数
{
Temp[0] = ADPool.Value_Uint16[UINADCH] - ADPool.Value_Uint16[UFADCH]; //计算Ek[0]
if( Temp[0] > PID.B_Uint8 )
{
//数值移位
PID.Ek_Uint32[2] = PID.Ek_Uint32[1];
PID.Ek_Uint32[1] = PID.Ek_Uint32[0];
PID.Ek_Uint32[0] = Temp[0];
//符号移位
PID.EkFlag_Uint8[2] = PID.EkFlag_Uint8[1];
PID.EkFlag_Uint8[1] = PID.EkFlag_Uint8[0];
PID.EkFlag_Uint8[0] = 0; //当前EK为正数
Temp[0] = (uint32)PID.KP_Uint8 * PID.Ek_Uint32[0]; // KP*EK0
Temp[1] = (uint32)PID.KI_Uint8 * PID.Ek_Uint32[1]; // KI*EK1
Temp[2] = (uint32)PID.KD_Uint8 * PID.Ek_Uint32[2]; // KD*EK2
}
}
else //反馈大于给定
{
Temp[0] = ADPool.Value_Uint16[UFADCH] - ADPool.Value_Uint16[UINADCH]; //计算Ek[0]
if( Temp[0] > PID.B_Uint8 )
{
//数值移位
PID.Ek_Uint32[2] = PID.Ek_Uint32[1];
PID.Ek_Uint32[1] = PID.Ek_Uint32[0];
PID.Ek_Uint32[0] = Temp[0];
//符号移位
PID.EkFlag_Uint8[2] = PID.EkFlag_Uint8[1];
PID.EkFlag_Uint8[1] = PID.EkFlag_Uint8[0];
PID.EkFlag_Uint8[0] = 1; //当前EK为负数
Temp[0] = (uint32)PID.KP_Uint8 * PID.Ek_Uint32[0]; // KP*EK0
Temp[1] = (uint32)PID.KI_Uint8 * PID.Ek_Uint32[1]; // KI*EK1
Temp[2] = (uint32)PID.KD_Uint8 * PID.Ek_Uint32[2]; // KD*EK2
}
}

/*以下部分代码是讲所有的正数项叠加,负数项叠加*/
if(PID.EkFlag_Uint8[0]==0)
{
PostSum += Temp[0]; //正数和
}
else
{
NegSum += Temp[0]; //负数和
} // KP*EK0
if(PID.EkFlag_Uint8[1]!=0)
{
PostSum += Temp[1]; //正数和
}
else
{
NegSum += Temp[1]; //负数和
} // - kI * EK1
if(PID.EkFlag_Uint8[2]==0)
{
PostSum += Temp[2]; //正数和
}
else
{
NegSum += Temp[2]; //负数和
} // KD * EK2
PostSum += (uint32)PID.Uk_Uint16; //
if( PostSum > NegSum ) // 是否控制量为正数
{
Temp[0] = PostSum - NegSum;
if( Temp[0] < (uint32)ADPool.Value_Uint16[UMAXADCH] ) //小于限幅值则为计算值输出
{
PID.Uk_Uint16 = (uint16)Temp[0];
}
else
{
PID.Uk_Uint16 = ADPool.Value_Uint16[UMAXADCH]; //否则为限幅值输出
}
}
else //控制量输出为负数,则输出0
{
PID.Uk_Uint16 = 0;
}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭