当前位置:首页 > 单片机 > 单片机
[导读]STM32里面STACK 和 HEAP ,前者为堆,后者为栈。今天在调试一段向Server发送程序的时候:出现一个奇怪的现象:fun(){ fun1( ); //初始化 fun2( ); //链接远程服务器 fun3( ); //发送数据}整体运行的时候,运行到fun3

STM32里面

STACK 和 HEAP ,前者为堆,后者为栈。

今天在调试一段向Server发送程序的时候:出现一个奇怪的现象:

fun(){

fun1( ); //初始化

fun2( ); //链接远程服务器

fun3( ); //发送数据

}

整体运行的时候,运行到fun3( );的地方就出现HaltFault!注释掉fun3( ),然后运行fun1( )和fun2( );可以运行。再注释掉fun1( )和fun2( )(此时已经链接上),单独运行fun3( );也能运行。吃午饭是和同事说明这一情况,他提醒说是不是因为堆栈的问题,后来回来查看MAP文件情况。


==============================================================================

Code (inc. data) RO Data RW Data ZI Data Debug

18208 1882 564 40 17736 485934 Grand Totals
18208 1882 564 40 17736 485934 ELF Image Totals
18208 1882 564 40 0 0 ROM Totals

==============================================================================

Total RO Size (Code + RO Data) 18772 ( 18.33kB)
Total RW Size (RW Data + ZI Data) 17776 ( 17.36kB)
Total ROM Size (Code + RO Data + RW Data) 18812 ( 18.37kB)

==============================================================================

在没有修改xx.s文件之前,一般默认的堆栈大小

Stack_Size EQU 0x00000400 即1024Byte

Heap_Size EQU 0x00000200 即512Byte

而Stack 用来存放函数的局部变量的,如果一个函数的局部变量过多,比如u8 buf[256],那么一下子就占用了1/4的栈空间。如果其他函数里面也存在这样的buf,那么很容易就超出栈的大小,而导致出现HaltFault的问题。

而Heap用来存放全局变量,静态变量,以及内存管理所用的内存(摘自:http://www.openedv.com/posts/list/24152.htm);

像之前那样,函数嵌套很深的话,栈要保持函数中局部变量的很多信息,可能会导致栈溢出,程序就容易崩溃。局部数组最好也不要超过某个值,如果太大,定义为全局数组。

==============================================================================


以下引用网上资料 理解堆和栈的区别

(1)栈区(stack):由编译器自动分配和释放,存放函数的参数值、局部变量的值等,其操作方式类似

于数据结构中的栈。

(2)堆区(heap):一般由程序员分配和释放,若程序员不释放,程序结束时可能由操作系统回收。分配

方式类似于数据结构中的链表。

(3)全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态

变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系

统自动释放。

(4)文字常量区:常量字符串就是存放在这里的。

(5)程序代码区:存放函数体的二进制代码。

例如:

int a=0; //全局初始化区

char *p1; //全局未初始化区

main()

{

int b; //栈

char s[]="abc"; //栈

char *p3= "1234567"; //在文字常量区Flash

static int c =0 ; //静态初始化区

p1= (char *)malloc(10); //堆区

strcpy(p1,"123456"); //"123456"放在常量区

}

所以堆和栈的区别:

stack的空间由操作系统自动分配/释放,heap上的空间手动分配/释放。

stack的空间有限,heap是很大的自由存储区。

程序在编译期和函数分配内存都是在栈上进行,且程序运行中函数调用时参数的传递也是在栈上进行。

==================================================================================


从以上网摘来看单片机的堆和栈是分配在RAM里的,有可能是内部也有可能是外部,可以读写;

栈:存函数的临时变量,即局部变量,函数返回时随时有可能被其他函数栈用。所以栈是一种分时轮流使用的存储区,

编译器里定义的Stack_Size,是为了限定函数的局部数据活动的范围,操过这么范围有可以跑飞,也就是栈溢出;

Stack_Size不影响Hex,更不影响Hex怎么运行的,只是在Debug调试时会提示错。栈溢出也有是超过了国界进行

活动,只要老外没有意见,你可以接着玩,有老外不让你玩,你就的得死,或是大家都死(互相撕杀),有的人写

单片机代码在函数里定义一个大数组 int buf[8192],栈要是小于8192是会死的很惨。

堆:存的是全局变量,这变量理论上是所有函数都可以访问的,全局变量有的有初始值,但这个值不是存在RAM里的,是

存在Hex里,下载到Flash里,上电由代码(编译器生成的汇编代码)搬过去的。有的人很“霸道”,上电就霸占已一块很

大的RAM(Heap_Size),作为己有(malloc_init),别人用只能通过他们管家借(malloc),用完还得换(free)。所以

一旦有“霸道”的人出现是编译器里必须定义Heap_Size,否则和他管家借也没有用。

总之:堆和栈有存在RAM里,他两各分多少看函数需求,但是他两的总值不能超过单片机硬件的实际RAM尺寸,否则只能

到海里玩(淹死了)或是自己打造船接着玩(外扩RAM)。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭