当前位置:首页 > 单片机 > 单片机
[导读]常规上ROM是用来存储固化程序的,RAM是用来存放数据的。由于FLASHROM比普通的ROM读写速度快,擦写方便,一般用来存储用户程序和需要永久保存的数据。譬如说,现在家用的电子式电度表,它的内核是一款单片机,该单片机

常规上ROM是用来存储固化程序的,RAM是用来存放数据的。由于FLASHROM比普通的ROM读写速度快,擦写方便,一般用来存储用户程序和需要永久保存的数据。譬如说,现在家用的电子式电度表,它的内核是一款单片机,该单片机的程序就是存放在ROM里的。电度表在工作过程中,是要运算数据的,要采集电压和电流,并根据电压和电流计算出电度来。电压和电流时一个适时的数据,用户不关心,它只是用来计算电度用,计算完后该次采集的数据就用完了,然后再采集下一次,因此这些值就没必要永久存储,就把它放在RAM里边。然而计算完的电度,是需要永久保存的,单片机会定时或者在停电的瞬间将电度数存入到FLASH里。--ROM存放指令代码和一些固定数值,程序运行后不可改动;RAM用于程序运行中数据的随机存取,掉电后数据消失..
code就是指将数据定义在ROM区域,具只读属性,例如一些LED显示的表头数据就可以定义成code存储在ROM。
ROM:(ReadOnlyMemory)程序存储器在单片机中用来存储程序数据及常量数据或变量数据,凡是c文件及h文件中所有代码、全局变量、局部变量、’const’限定符定义的常量数据、startup.asm文件中的代码(类似ARM中的bootloader或者X86中的BIOS,一些低端的单片机是没有这个的)通通都存储在ROM中。RAM:(RandomAccessMemory)随机访问存储器用来存储程序中用到的变量。凡是整个程序中,所用到的需要被改写的量,都存储在RAM中,“被改变的量”包括全局变量、局部变量、堆栈段。程序经过编译、汇编、链接后,生成hex文件。用专用的烧录软件,通过烧录器将hex文件烧录到ROM中(究竟是怎样将hex文件传输到MCU内部的ROM中的呢?),因此,这个时候的ROM中,包含所有的程序内容:无论是一行一行的程序代码,函数中用到的局部变量,头文件中所声明的全局变量,const声明的只读常量,都被生成了二进制数据,包含在hex文件中,全部烧录到了ROM里面,此时的ROM,包含了程序的所有信息,正是由于这些信息,“指导”了CPU的所有动作。可能有人会有疑问,既然所有的数据在ROM中,那RAM中的数据从哪里来?什么时候CPU将数据加载到RAM中?会不会是在烧录的时候,已经将需要放在RAM中数据烧录到了RAM中?要回答这个问题,首先必须明确一条:ROM是只读存储器,CPU只能从里面读数据,而不能往里面写数据,掉电后数据依然保存在存储器中;RAM是随机存储器,CPU既可以从里面读出数据,又可以往里面写入数据,掉电后数据不保存,这是条永恒的真理,始终记挂在心。清楚了上面的问题,那么就很容易想到,RAM中的数据不是在烧录的时候写入的,因为烧录完毕后,拔掉电源,当再给MCU上电后,CPU能正常执行动作,RAM中照样有数据,这就说明:RAM中的数据不是在烧录的时候写入的,同时也说明,在CPU运行时,RAM中已经写入了数据。关键就在这里:这个数据不是人为写入的,CPU写入的,那CPU又是什么时候写入的呢?听我娓娓道来。上回说到,ROM中包含所有的程序内容,在MCU上电时,CPU开始从第1行代码处执行指令。这里所做的工作是为整个程序的顺利运行做好准备,或者说是对RAM的初始化(注:ROM是只读不写的),工作任务有几项:1、为全局变量分配地址空间---à如果全局变量已赋初值,则将初始值从ROM中拷贝到RAM中,如果没有赋初值,则这个全局变量所对应的地址下的初值为0或者是不确定的。当然,如果已经指定了变量的地址空间,则直接定位到对应的地址就行,那么这里分配地址及定位地址的任务由“连接器”完成。2、设置堆栈段的长度及地址---à用C语言开发的单片机程序里面,普遍都没有涉及到堆栈段长度的设置,但这不意味着不用设置。堆栈段主要是用来在中断处理时起“保存现场”及“现场还原”的作用,其重要性不言而喻。而这么重要的内容,也包含在了编译器预设的内容里面,确实省事,可并不一定省心。平时怎么就没发现呢?奇怪。3、分配数据段data,常量段const,代码段code的起始地址。代码段与常量段的地址可以不管,它们都是固定在ROM里面的,无论它们怎么排列,都不会对程序产生影响。但是数据段的地址就必须得关心。数据段的数据时要从ROM拷贝到RAM中去的,而在RAM中,既有数据段data,也有堆栈段stack,还有通用的工作寄存器组。通常,工作寄存器组的地址是固定的,这就要求在绝对定址数据段时,不能使数据段覆盖所有的工作寄存器组的地址。必须引起严重关注。这里所说的“第一行代码处”,并不一定是你自己写的程序代码,绝大部分都是编译器代劳的,或者是编译器自带的demo程序文件。因为,你自己写的程序(C语言程序)里面,并不包含这些内容。高级一点的单片机,这些内容,都是在startup的文件里面。仔细阅读,有好处的。通常的做法是:普通的flashMCU是在上电时或复位时,PC指针里面的存放的是“0000”,表示CPU从ROM的0000地址开始执行指令,在该地址处放一条跳转指令,使程序跳转到_main函数中,然后根据不同的指令,一条一条的执行,当中断发生时(中断数量也很有限,2~5个中断),按照系统分配的中断向量表地址,在中断向量里面,放置一条跳转到中断服务程序的指令,如此如此,整个程序就跑起来了。决定CPU这样做,是这种ROM结构所造成的。其实,这里面,C语言编译器作了很多的工作,只是,你不知道而已。如果你仔细阅读编译器自带的help文件就会知道很多的事情,这是对编译器了解最好的途径。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭