当前位置:首页 > 单片机 > 单片机
[导读]Ⅰ、概述EXIT外部中断在使用到按键或者开关控制等应用中比较常见,低功耗中断唤醒也是很常见的一种。因此,EXIT在实际项目开发中也是比较常见的一种。STM32F0中外部中断EXIT属于中断和事件的章节,请看参考手册第十二

Ⅰ、概述

EXIT外部中断在使用到按键或者开关控制等应用中比较常见,低功耗中断唤醒也是很常见的一种。因此,EXIT在实际项目开发中也是比较常见的一种。

STM32F0中外部中断EXIT属于中断和事件的章节,请看参考手册第十二章,但需要配合系统配置控制器(System configuration controller)进行操作,为中断分配引脚,详情请看参考手册第十章。


Ⅱ、下载

文章提供的“软件工程”都是在硬件板子上进行多次测试、并保证没问题才上传至360云盘,请放心下载测试,如有问题请检查一下你的板子是否有问题。

ST标准外设库和参考手册、数据手册等都可以在ST官网下载,你也可以到我的360云盘下载。关于F0系列芯片的参考手册有多个版本(针对F0不同芯片),但有一个通用版本,就是“STM32F0x128参考手册V8(英文)2015-07”建议参考该手册,以后如果你换用一种型号芯片也方便了解。

今天的软件工程下载地址(360云盘):

https://yunpan.cn/cRJDddvF4hdXE访问密码 f0af

STM32F0xx的资料可以在我360云盘下载:

https://yunpan.cn/cS2PVuHn6X2Bj访问密码 8c37

Ⅲ、准备工作

对于EXIT的编程,建议大家准备F0的参考手册第十章和数据手册,方便查阅相关知识,没有的请到ST官网或到我360云盘下载。

今天总结的软件工程是基于“TIM基本延时配置详细过程”修改而来,因此需要将该软件工程下载准备好。我每次都是提供整理好的软件工程供大家下载,但是,如果你是一位学习者,建议自己亲手一步一步操作。

Ⅳ、外部中断原理

其实EXIT外部引脚中断的原理很简单,配置相应引脚为输入模式,根据电路看是否需要上下拉电阻,将该引脚通过SYSCFG配置为中断线,再配置NVIC,编写中断处理的事情即可。

Ⅴ、代码描述

请下载软件工程查看源代码,结合源代码理解总结的每一点。

①RCC时钟


该函数位于bsp.c文件上面;

我个人习惯第一步配置时钟,ST官方提供的例程也是把配置时钟放在前面。关于RCC时钟的配置比较重要,有好几次我就是由于忘记配置相应RCC时钟,让我找了很久的问题,最后才发现是RCC时钟没有配置。

注意:

外设时钟不要随便添加,比如:RCC_APB1外设不要配置在RCC_APB2时钟里面【如:RCC_APB2PeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);这样能编译过,但是错误的】

我每次都提醒RCC时钟,是因为很多人就是因为时钟而导致软件运行有问题,所以,提醒更多人要注意配置RCC.

②EXIT配置


该函数位于bsp.c文件下面;

注意:

该函数将EXIT分为三部分,引脚的基本配置、外部中断线配置、系统控制器配置,每一个步骤都需要,否则不会响应中断。

③NVIC配置


该函数位于bsp.c文件下面;

要响应中断,就需要为其分配中断优先等级。

注意:

外部中断通道入口不是每一个中断分配一个入口,根据手册和参考资料可以看得出来分配为:EXTI0_1_IRQn、EXTI2_3_IRQn、EXTI4_15_IRQn;意思就是外部中断0-1为同一个的入口,其他原理相同。

④中断函数


该函数位于stm32f0xx_it.c文件下面;

这里我的操作相对比较简单,按键一次,中断一次。按下按键,延时消抖,变化LED一次,等待按键释放,最后清除中断标志位。

注意:

图中红色标记才是在实际应用中的重点,如果一个大的工程,有其他人也参与进来了,或者项目有部分代码是移植之前的,很有可能开启了其他中断,如果这里不加这一句判断,很可能程序会死在中断里面。

Ⅵ、说明

或许你硬件芯片不是提供工程里面的芯片,但是STM32F0的芯片软件兼容性很好,可以适用于F0其他很多型号的芯片,甚至是F2、F4等芯片上(具体请看手册、或者亲自测试)。

本文章提供的软件工程是基于ST标准外设库为基础建立而成,而非使用STM32CubeMX建立工程。个人觉得使用ST的标准外设库适合与学习者,STM32CubeMX建立工程结构复杂,对于学习者,特别是初学者估计会头疼。

今天的工程是基于工程“STM32F0xx_TIM基本延时配置详细过程”修改而来,以上实例总结仅供参考,若有不对之处,敬请谅解。

Ⅶ、最后

关注微信,回复“更多内容”,将获得更多内容(如:UCOS实例等,不断更新中......)。

如果你喜欢我分享的内容,你又想了解更多相关内容,请关注文章开头的微信公众号,新内容持续更新中,后期将会有更多精彩内容出现。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为增进大家对模组电源的认识,本文将对模组电源、模组电源的用途、模组电源的使用注意事项予以介绍。

关键字: 电源 指数 模组电源

为增进大家对电源的认识,本文将对隔离电源、非隔离电源之间的区别或者说隔离电源比非隔离电源有哪些优势予以详细介绍。

关键字: 电源 指数 隔离电源

为增进大家对电源的认识,本文将对电源无法带起负载的原因以及电源内阻对电路的影响予以介绍。

关键字: 电源 指数 内阻

为增进大家对人工智能的认识,本文将对人工智能的应用以及人工智能和量子计算机的关系予以介绍。

关键字: 人工智能 AI 指数

为增进大家对人工智能的认识,本文将对人工智能的技术和方法,以及人工智能的趋势予以介绍。

关键字: 人工智能 AI 指数

为增进大家对人工智能的认识,本文将对人工智能对社会结构性冲击以及人们对人工智能的部分研究予以介绍。

关键字: 人工智能 AI 指数

May 9, 2024 ---- 据TrendForce集邦咨询研究显示,2023年全球前十大IC设计业者营收合计约1,677亿美元,年增长12%,关键在于NVIDIA(英伟达)带动整体产业向上,其营收年成长幅度高达10...

关键字: NVIDIA IC设计 AI

May 8, 2024 ---- 苹果5月新品发布会推出主打AMOLED屏幕的平板产品,新款Pro版本的AMOLED屏幕采用双层串联结构,目的在于改善AMOLED屏幕长期存在的烧屏及寿命问题,而无需背光模组的优势也迎来史...

关键字: Apple iPad Pro 显示器

May 7, 2024 ---- 据TrendForce集邦咨询最新预估,第二季DRAM合约价季涨幅将上修至13~18%;NAND Flash合约价季涨幅同步上修至约15~20%,全线产品仅eMMC/UFS价格涨幅较小,...

关键字: NAND Flash DRAM

为增进大家对激光雷达的认识,本文将对激光雷达的应用场景、激光雷达的发展现状予以介绍。

关键字: 雷达 指数 激光雷达
关闭
关闭